

DESC Technical Workgroup

CWV Optimisation Trial Phase Update

22nd September 2014

- Trial Phase Update
- Explanation of results provided
- Preliminary Results for SW
- Pseudo SNET
- Next Steps

Trial Phase Udpate - Background

- As per the approved Approach document: "The objective of the Trial phase is to establish key principles and approaches for how the main CWV optimisation analysis will be carried out during the Production phase"
- TWG agreed to reviewing the results of 4 LDZs (SC,NE,WM and SW)
- The Trial phase has analysed results for an 17 year period and 12 year period, namely:
 - 17 years 1996/97 to 2012/13
 - 12 years 2001/02 to 2012/13
- The values of the CWV parameters are chosen to give the best fit to demand on <u>average</u> across a <u>number of years</u>

Trial Phase Update - Infilling

- One of the major inputs to this process is the weather data series which this time will be based on the Weather Station Substitution Methodology (WSSM) dataset
- For the majority of weather stations there are records where either an observation or estimate does not exist. Xoserve has been working on applying the methodology proposed by E.On in order to create a complete data series which is necessary for optimisation
- This in-filling has been completed for all current gas industry stations for both temperature and wind speed. The data will be made available soon to industry parties on the secure area of the Xoserve website

Trial Phase Update - Results

- Due to the additional workload relating to in-filling we are only able to share the full results for SW LDZ today. The results for the remaining 3 Trial LDZs will be shared shortly via correspondence
- At the end of the Trial phase TWG are required to have selected a number of years to be used for deriving the CWV parameters.
- It is also important that Xoserve are clear on analysis / charts required for presenting the final results in the Production phase (Q4)
- Feedback on the results for SW is therefore welcome

Trial Phase – Assessment of alternative periods

- Derive alternative CWVs for 4 LDZs (SC, NE, WM and SW) based on 17 and 12 gas years' data and derive aggregate NDM demand models for 4 LDZs for alternative CWVs (plus current CWV)
- Calculate revised SNET values for alternative periods

7

- Assess average fit of CWVs to aggregate NDM demand and Assess change to 1 in 20 peak aggregate NDM demand estimates from current CWV (using demand models and 1 in 20 peak CWVs)
- Where results have been benchmarked to the current CWV, it should be appreciated that 'current' is based on <u>EXISITNG</u> parameters but with the <u>NEW</u> weather data series.

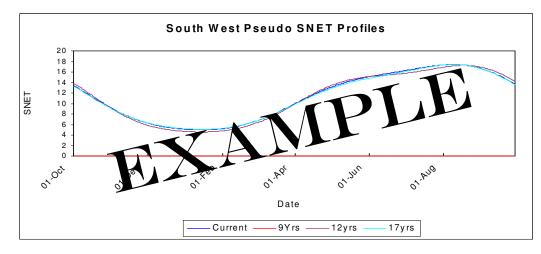
Trial Phase – Explanation of results provided Results 1 – Example Format

• Objective: To provide a summary of all the iterations attempted with best option highlighted. This will be provided for each 'run' – i.e. 12yrs, 17yrs etc

LDZ	Station
NE	WAT

Run Description	MIN_ET	MAX_ET	L1	L2	L3	V 0	V1	V2	Q	Increase in R-sq	% decrease in RMSE			
Previous Optimisation	3	15	0.692	0.0150	0-	0	1.8	179	.43	0.00%	0.00%			
Old Param - New SNET	3	15	0.692	0.0150	/ 0	D	14 8	17.9	0.43	0.02%	0.43%			
New alternative	3	15	0 623	0.0150	0.1	0	15	18.1	0.39	-0.05%	-1.58%			
New alternative	2			0148		1	15	18.1	0.40	-0.04%	-1.33%			
New alternative	2	6	1 621	0.0155	0.07	2	15.3	18.5	0.32	-0.07%	-2.03%			
New alternative	3	16	-0.618	0.0158	0.07	2	15.3	18.5	0.33	-0.07%	-2.17%			
New alternative	4	16	0.606	0.0179	0.04	3	15.4	18.6	0.30	-0.09%	-2.81%			
New alternative	3	20	0.562	0.0199	0.08	3	15.8	19	0.25	-0.28%	-8.73%			
New alternative	3	25	0.541	0.0211	0.16	3	16	19.7	0.20	-0.38%	-11.91%			
								Pos - improvement against benchmark						

Neg - worse than benchmark


respect > commitment > teamwork

Trial Phase – Explanation of results provided Results 2 – Example Format

 Objective: For selected run compare all pseudo SNET profiles – 17yr, 12yr and Current

9

 Analysis: Calculate revised pseudo Seasonal Normal Effective Temperature (SNET) and visually compare profiles. High level observations on results provided

Trial Phase – Explanation of results provided Results 3 – Example Format

- Objective: To confirm which period provides the best fit between CWV and demand over a range of gas years
- Analysis: Derive aggregate NDM demand models for all alternative periods. Assess average 'fit' of CWVs to aggregate NDM demand. Results of current vs revised are represented as Green: better fit; Red: worse fit.

Gas Year Period TESTED against	Fit Statistic	Current CWV	9 year CWV	12 year CWV	17 year CWV
1996/97 -	Adj. R-sq.	99.12%		99.12%	99.13%
2012/13	RMSE (MWh	4,517		4,552	4,521
2001/02 -	Adj. R-sq.	99.05%		99.11%	99.10%
2012/13	RMSE (MWh)	4,788		4,652	4,670

respect > commitment > teamwork

Trial Phase – Explanation of results provided Results 4 – Example Format

- Objective: Assess change to estimated 1 in 20 peak aggregate NDM demand estimates for alternative periods from current CWV
- Analysis: Use demand models and 1 in 20 peak CWVs to assess estimated 1 in 20 peak demand and compare with levels from current CWV

Gas Year Period	9 year CWV	12 year CWV	17 year CWV
1996/97 — 2012/13		6.26%	7.34%
2001/02 – 2012/13	TXA	6.16%	7.24%
2004/05 – 2012/13		6.12%	7.19%
2009/10 — 2012/13		5.85%	6.86%

respect > commitment > teamwork

Pseudo SNET – use of Min and Max ET range

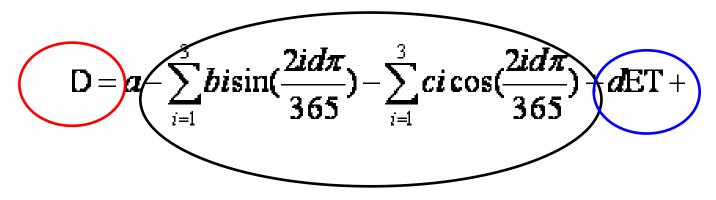
- TWG wishes to explore Pseudo SNET Max ET ranges
 - Pseudo SNET calculated by the formula:

$$D = a - \sum_{i=1}^{3} bi \sin(\frac{2id\pi}{365}) - \sum_{i=1}^{3} ci \cos(\frac{2id\pi}{365}) + dET + eWC + fFRI + gSAT + hSUN + \mu$$

- This formula derives a pseudo SNET from Aggregate NDM Demand using a 3-frequency Fourier series
- Key factor other than demand is the Effective Temperature (ET) which is given by
 - $ET_d = ET_{d-1} + 0.5 * AT_d$ (AT = Actual temperature)
- The following slides describe the SNET calculation and impacts on it by testing different values of ET Max

respect > commitment > teamwork

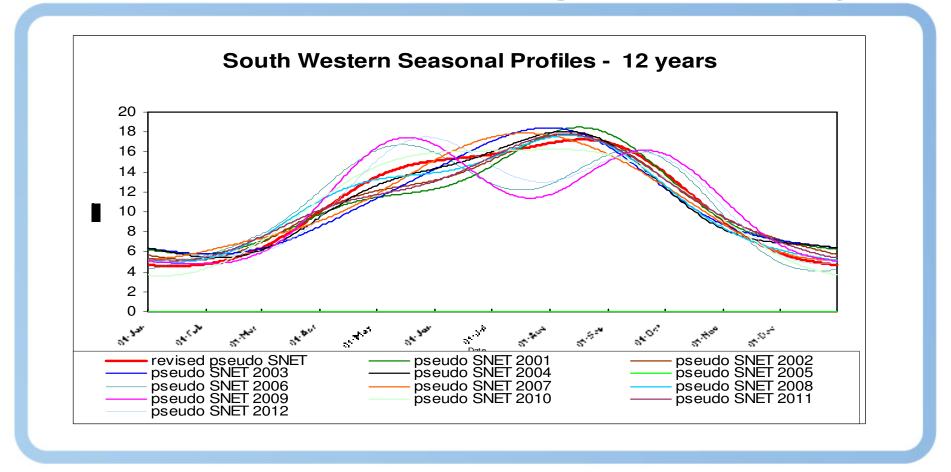
ET Min and Max Ranges


- ET_{min} and ET_{max} ranges:
 - ET_{min} and ET_{max} are integers that vary by LDZ and are chosen to select most of the non-holiday days that do not fall within the cold weather upturn or warm weather flattening off periods.
 - ET values that fall outside the cold weather upturn or warm weather flattening distort the pseudo snet values when the regression models assess the demand against the ET values
 - Note in the derivation of the cold weather and warm weather flattening all data points are used including those outside this range

respect > commitment > teamwork

ET Influence on Pseudo SNET

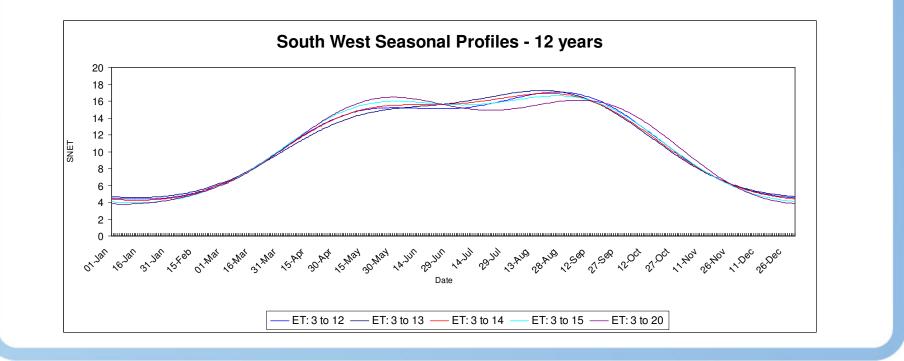
• The following section of the formula shows the demand, Pseudo SNET and ET elements in the regression



• In warmer periods as demand flattens off (red) and ET (blue) keeps rising the SNET tries to compensate which introduces some strange patterns

respect > commitment > teamwork

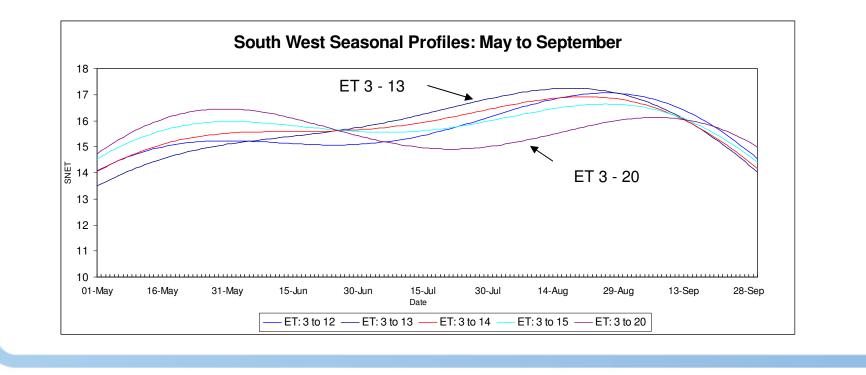
SW – Pseudo SNET for ET 3 to 13 against individual years


•The Red line is the average Pseudo SNET which would be used in the optimisation.

•The other lines are the Pseudo SNET's for the individual years

SW – ET_{Min} =3 for variety of ET_{Max} values

- Chart showing Pseudo SNET's with ET_{\min} of 3 and exploring a number of ET_{\max} values



respect > commitment > teamwork

SW: ET_{Min} of 3 for variety of ET_{Max} values

•Same chart as in the previous slide but focus on May to September months

•Pseudo SNET 3-20 is working over this period to as demand flattens off and effective temperature is high / rising.

respect > commitment > teamwork

²⁰ Results 1: SW LDZ – Iterations Summary – 17 years

• Preferred iteration is highlighted

LDZ	Station
SW	FIL

Run Description	MIN_ET	MAX_ET	L1	L2	L3	V0	V1	V2	Q	Increase in	% decrease in	Average
										R-sq	RMSE	RMSE
Previous Optimisation	4	14	0.637	0.0088	0.09	3	14.3	17.6	0.38	0.00%	0.00%	4,617,173
Old Param - New SNET	4	14	0.637	0.0088	0.09	3	14.3	17.6	0.38	-0.02%	-0.71%	4,651,983
New alternative	4	14	0.664	0.0091	0.27	3	14.2	17.5	0.40	0.04%	1.78%	4,530,328
New alternative	0	13	0.659	0.0090	0.25	3	14	17.6	0.36	0.04%	1.88%	4,525,100
New alternative	0	13	0.659	0.0090	0	0	13.9	17.6	0.37	0.02%	0.92%	4,572,071
New alternative	0	14	0.684	0.0093	0.22	3	14.3	17.6	0.38	0.03%	1.66%	4,535,818
New alternative	1	13	0.659	0.0090	0.32	3	13.9	17.6	0.37	0.02%	1.03%	4,566,885
New alternative	1	14	0.682	0.0092	0.23	3	14.3	17.6	0.38	0.03%	1.66%	4,536,056
New alternative	3	13	0.649	0.0090	0.3	3	13.9	17.6	0.37	0.04%	1.97%	4,520,956
New alternative	3	15	0.684	0.0097	0.32	3	14.6	0.39	0.39	0.02%	1.10%	4,563,357
										Pos - impro	vement against	
										ben	chmark	
										Nea - v	vorse than	

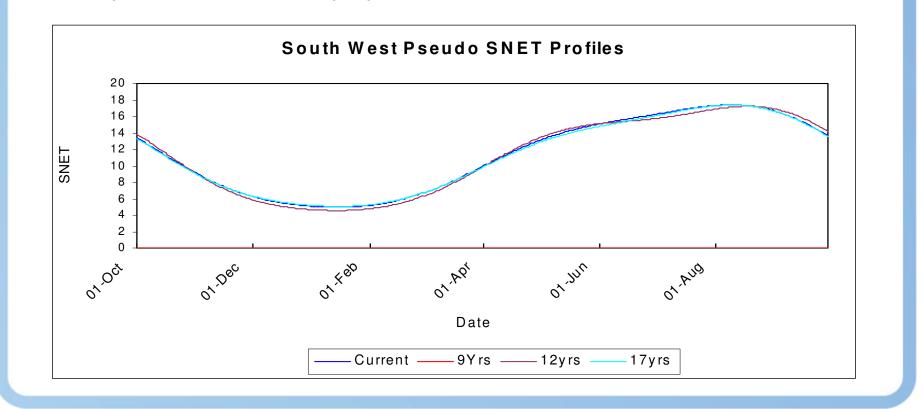
benchmark

²¹ **Results 1: SW LDZ – Iterations Summary – 12 years**

• Preferred iteration is highlighted

LDZ	Station
SW	FIL

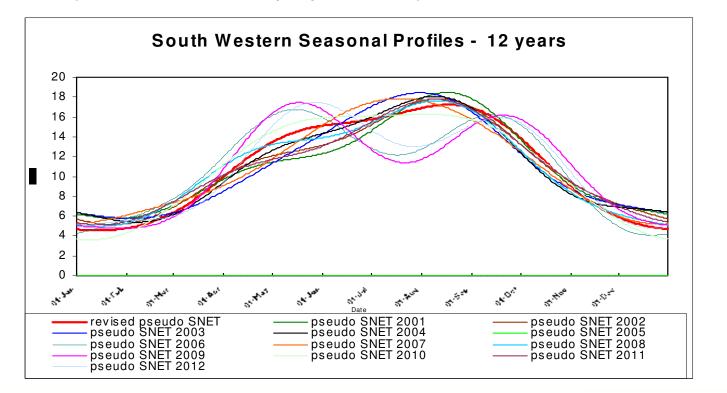
Run Description	MIN_ET	MAX_ET	L1	L2	L3	V0	V1	V2	Q	Increase in	% decrease in	Average
										R-sq	RMSE	RMSE
Previous Optimisation	4	14	0.637	0.0088	0.09	3	14.3	17.6	0.38	0.00%	0.00%	4,787,866
Old Param - New SNET	4	14	0.637	0.0088	0.09	3	14.3	17.6	0.38	-0.02%	-0.81%	4,830,078
New alternative	4	14	0.672	0.0100	0.25	3	14.3	17.5	0.40	0.05%	2.57%	4,654,722
New alternative	0	13	0.678	0.0099	0.21	3	14.1	17.5	0.38	0.05%	2.21%	4,673,194
New alternative	0	13	0.678	0.0099	0	0	14.1	17.5	0.38	0.03%	1.18%	4,726,908
New alternative	0	14	0.695	0.0100	0.19	3	14.4	17.5	0.39	0.05%	2.18%	4,674,823
New alternative	1	13	0.677	0.0099	0.24	3	14.2	18	0.36	0.05%	2.39%	4,673,621
New alternative	1	14	0.692	0.0100	0.21	3	14.4	17.6	0.40	0.05%	2.50%	4,668,396
New alternative	3	13	0.667	0.0101	0.24	3	14.1	17.5	0.39	0.06%	2.62%	4,651,779
New alternative	3	15	0.688	0.0105	0.21	3	14.9	18.1	0.34	0.05%	2.49%	4,668,825
										Pos - impro	vement against	
										ben	chmark	
										Neg - v		
										•	chmark	


²²**Results 1: SW LDZ – Iterations Summary – 9 years**

• To be completed

Results 2: SW LDZ - Pseudo SNET profiles

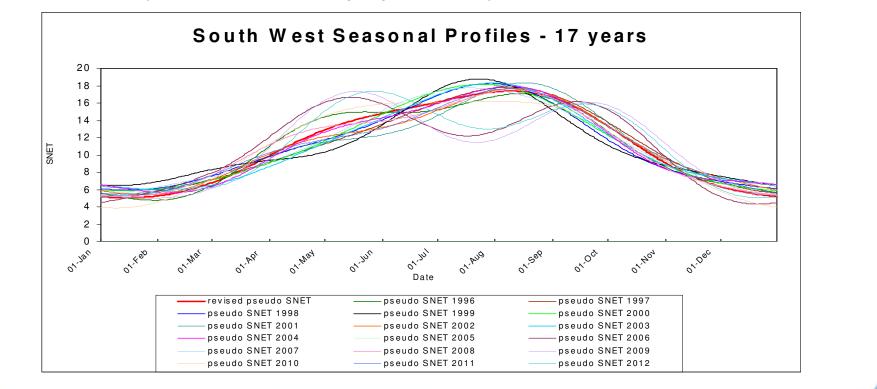
Comparison of current to proposed Pseudo SNET



respect > commitment > teamwork

Results 2b: SW LDZ - Pseudo SNET 12 year

Individual years influence on proposed 12 year Pseudo SNET



respect > commitment > teamwork

Results 2c: SW LDZ - Pseudo SNET 17 year

Individual years influence on proposed 17 year Pseudo SNET

respect > commitment > teamwork

²⁶ Results 3: SW LDZ – Fit between CWV and Demand

Gas Year Period TESTED against	Fit Statistic	Current CWV	9 year CWV	12 year CWV	17 year CWV
1996/97 -	Adj. R-sq.	99.12%		99.12%	99.13%
2012/13	RMSE (MWh)	4,617		4,552	4,521
2001/02 -	Adj. R-sq.	99.05%		99.11%	99.10%
2012/13	RMSE (MWh)	4,788		4,652	4,670
2004/05 -	Adj. R-sq.	99.03%		99.12%	99.11%
2012/13	RMSE (MWh)	4,823		4,603	4,636
2009/10 –	Adj. R-sq.	98.86%		99.08%	99.05%
2012/13	RMSE (MWh)	5,173		4,659	4,742

²⁷ Results 4: SW LDZ – change in estimated peak demand (compared to current CWV)

Gas Year Period	9 year CWV	12 year CWV	17 year CWV
1996/97 – 2012/13		6.26%	7.34%
2001/02 – 2012/13		6.16%	7.24%
2004/05 – 2012/13		6.12%	7.19%
2009/10 – 2012/13		5.85%	6.86%

Next steps

- Results for the remaining 3 Trial LDZs (SC,NE and WM) will be shared over the next few weeks
- TWG will be asked to review these results and provide their view on how many years should be selected for optimising parameters over, in the Production phase
- Any questions on the process so far and/or additional information the TWG may need to make this decision

