X Serve

Demand Estimation Sub Committee

Seasonal Normal Review 2020:

Review of CWV Optimisation

7th October 2019

Meeting Objectives

At today's DESC meeting, members to consider recommendations for revised CWV parameters and provide approval for their use from 1st October 2020. This slide pack contains:

- Recap on modified CWV formula
- CWV Optimisation
 - Background
 - Methodology
 - Data
 - Results
- Conclusions and Next Steps

Overview - Milestones

At the 10th December 2018 meeting DESC approved the following high level approach and work plan for performing this analysis - major milestones below:

• **MILESTONE**: DESC to decide whether to consider a revision to the existing **CWV** formula and confirm the template for its 'benchmark' results (1st April 2019)

• **MILESTONE**: DESC define proposed **CWV** formula for next period i.e. GY 2020/21 onwards (8th July 2019)

• **MILESTONE**: DESC confirm parameters for use in proposed **CWV** formula for Gas Year 2020/21 (7th October 2019)

• MILESTONE: DESC decide whether to revise existing SNCWV (1st April 2019)

• MILESTONE: DESC confirm revised SNCWV values (9th December 2019)

Recap on DESC Decision - CWV Formula

DESC voted on 22nd July to approve the following CWV formula definition for Gas Year 2020/21 onwards:

 $CW_{t} = I_{1} * E_{t} + (1.0 - I_{1}) * S_{t} - I_{2} * Max(0, W_{t} - W_{0}) * Max(0, T_{0} - AT_{t}) + S_{0} * SR_{t} + P_{0} * P_{t}$

$CWV_{t} = V1 + q * (V2 - V1)$	if $V_2 \leq CW_t$	(summer cut-off)
$\mathbf{CWV}_{\mathbf{t}} = \mathbf{V1} + \mathbf{q} * (\mathbf{CW}_{\mathbf{t}} - \mathbf{V1})$	if $V_1 < CW_t < V2$	(transition)
$\mathbf{CWV}_{\mathbf{t}} = \mathbf{CW}_{\mathbf{t}}$	if $V_0 \leq CW_t \leq V1$	(normal)
$\mathbf{CWV}_{\mathbf{t}} = \mathbf{CW}_{\mathbf{t}} + \mathbf{I3} * (\mathbf{CW}_{\mathbf{t}} - \mathbf{V0})$	if $V_0 > CW_t$	(cold weather upturn)

Where $E_t = ETW * E_{t-1} + (1 - ETW) * AT_t$

And *ETW* is an optimised parameter which determines the weight applied to the previous Gas Days Effective Temperature vs the current days Actual Temperature

The CWV formula has been updated to included a term for Solar radiation $S_0 * SR_t$ and Precipitation $P_0 * P_t$, with the aim to improve accuracy of the formula for predicting demand.

CWV Formula – Solar Term

The Solar Radiation term of the CWV formula is calculated as follows

 $S_0 * SR_t$

Where S_0 is an optimised parameter which determines the magnitude of the Solar effect to be applied.

 SR_t is measured as the log difference between actual Solar radiation observations and a Pseudo Seasonal Normal Effective Solar (SNES). The calculation for the SNES term is similar to the pseudo-SNET, with an additional term for Solar radiation, as per <u>DESC meeting on 28th June</u>:

$$SNES = \alpha - \sum_{i=1}^{3} \beta i \sin\left(\frac{2id\pi}{365}\right) - ci \cos\left(\frac{2id\pi}{365}\right) + dET + eWC + fSolar + gFRI + hSAT + iSUN + \mu$$

CWV Formula – Precipitation Term

The Precipitation term of the CWV formula is calculated as follows

 $P_0 * P_t$

Where P_0 is an optimised parameter determining how much of a precipitation effect is applied And P_t is a measure of precipitation readings for a specific gas day t.

A decision was made by <u>DESC on 22nd July 2019</u> that the precipitation term was to be added to future proof the CWV formula, however the values of P_0 will be set to a default value of zero until such time that analysis can be conducted to understand how the precipitation term will effect the CWV. Precipitation will therefore have no influence on the value of the CWV under current parameters.

CWV Formula Recap – 2015 Parameters

LDZ	Weather Station	l ₁	l ₂	l ₃	V ₀	V ₁	V ₂	q	Wo	T ₀
EA	London Heathrow	0.719	0.0144	0.09	3	15.3	19.2	0.34	0	14
EM	Nottingham Watnall	0.691	0.0144	0.05	3	13.5	16.8	0.49	0	14
NE	Nottingham Watnall	0.676	0.0159	0	0	14.7	17.9	0.38	0	14
NO	Albermarle Barracks	0.663	0.0086	0.15	3	13	16	0.46	0	14
NT	London Heathrow	0.727	0.0151	0.22	3	15.2	19.2	0.38	0	14
NW	Rostherne No 2	0.697	0.0149	0.3	3	14.9	18	0.38	0	14
SC	Glasgow Bishopton	0.635	0.0119	0.15	3	12.2	16	0.64	0	14
SE	London Heathrow	0.712	0.014	0.33	3	15.1	18.7	0.38	0	14
SO	Southampton Oceanographic Institute	0.72	0.0134	0.24	3	14.8	18.2	0.37	0	14
SW	Yeovilton Weather Station *	0.682	0.01	0.22	3	14.2	17.3	0.42	0	14
WM	Birmingham Winterbourne 2 (Wind speeds Coleshill)	0.72	0.0111	0.14	3	13.7	17.2	0.43	0	14
WN	Rostherne No 2	0.697	0.0149	0.3	3	14.9	18	0.38	0	14
WS	St. Athan	0.669	0.0101	0.11	3	14.8	17.9	0.46	0	14

* Filton Weather station up to and including Gas Day 30th September 2018, Yeovilton with temperature bias adjustment to mimic Filton Weather Station from Gas Day 1st October 2018 onwards

Optimisation Overview – Methodology

British gas DESC member Jason Blackmore has devised a tool to perform optimisation calculations and propose a set of final parameters. The broad steps followed by the tool are as follows:

- Demand and Weather data for gas years 2010/11 to 2017/18 is loaded into the tool
- SNET, SNES and the CWV formulae are broken down into their component parts and recalculated
- The optimisation tool uses Microsoft Excel add-in 'Solver' which utilises a goal seek methodology to run through possible combinations of inputs to these formulas with the aim of reducing the overall error sum of squares when plotted against actual demand
- In this way, the ET/AT weight, SNET and SNES are optimised to find the best fit when compared to actual observations.

Optimisation Overview – Methodology

- Solver is utilised again to run through possible sets of CWV parameters with the target to reduce total error sum of squares across all gas years.
- As can be seen in the example, the data points become more concentrated around the regression line and the R-squared value has increased from 0.9799 to 0.9859
- Each parameter has a defined minimum and maximum range within which the optimum value can be found. No preference is given during the optimisation to lowering or raising any specific parameters, therefore the results are purely driven by which combination of parameters provides the best improvement to the overall R-squared value.

Optimisation Overview – Weather Stations

	Temperature	Windspeed	Solar radiation
EA	London Heathrow	London Heathrow	London Heathrow
EM	Nottingham Watnall	Nottingham Watnall	Nottingham Watnall
NE	Nottingham Watnall	Nottingham Watnall	Nottingham Watnall
NO	Albermarle Barracks	Albermarle Barracks	Durham Weather Station
NT	London Heathrow	London Heathrow	London Heathrow
NW	Rostherne No 2	Rostherne No 2	Rostherne No 2
SC	Glasgow Bishopton	Glasgow Bishopton	Glasgow Bishopton
SE	London Heathrow	London Heathrow	London Heathrow
SO	Southampton Oceanographic Institute	Southampton Oceanographic Institute	Southampton Oceanographic Institute
SW	Yeovilton Weather Station	Yeovilton Weather Station	Yeovilton Weather Station
WM	Birmingham Winterbourne 2	Coleshill	Coleshill
WN	Rostherne No 2	Rostherne No 2 Rostherne No 2	
WS	St. Athan	St. Athan	St. Athan

Albemarle Barracks does not record Solar Radiation. Consultation with MeteoGroup Confirmed that Durham is the best alternative.

Coleshill was used for WM's Solar Radiation as it has fewer 'Null' readings than Winterbourne.

All other LDZ's have retained their main weather station for Solar radiation

Optimisation Overview - Data

- Gas years used for deriving parameters including pseudo-SNET and pseudo-SNES are 2010/11 to 2017/18 inclusive
- For these gas years the demand data used is Aggregate NDM demand for all available Monday to Thursday non holiday gas days
- Temperature, Wind Speed and Solar radiation data for the optimisation period has mainly been sourced from WSSM data and UKLink and validated against historic CWV calculations.
- Audits have been conducted on the data to ensure it matches data held by Xoserve which will feed into recalculating historic CWV's and Seasonal Normal calculations

Optimisation Overview – Results

• Below is a summary of the statistics used in the main results:

R-Squared

R-squared represents the proportion of the variance of a dependent variable that's explained by an independent variable or variables in a regression model. E.g. an R-squared value of 0.50 suggests that approximately half of the observed variation can be explained by the model's inputs

MAPE (Mean Absolute Percentage Error)

The mean absolute percentage error (MAPE) is a statistical measure of prediction accuracy of a forecasting method. The smaller the MAPE value, the better the model is at forecasting expected results.

• RMSE (Root Mean Squared Error)

RMSE is defined as the standard deviation of the residuals. Residuals are a measure of how far from a regression line data points lie. RMSE is a measure of how concentrated data is around a line of best fit.

CWV Optimisation Detailed Results

(refer to main results in BG analysis)

Proposed 2020 Parameters

LDZ	Weather Station	ET/AT Weight	I ₁	l ₂	l ₃	V ₀	V ₁	V ₂	q	Wo	To	S ₀	P ₀
EA	London Heathrow	0.460	0.723	0.015	0.109	-0.235	15.131	18.885	0.368	-0.477	12.650	0.635	0.000
EM	Nottingham Watnall	0.480	0.689	0.010	0.138	-1.344	13.008	16.897	0.424	-2.417	17.377	0.698	0.000
NE	Nottingham Watnall	0.459	0.672	0.009	0.083	-1.261	12.924	16.679	0.446	-1.652	21.596	0.568	0.000
NO	Albermarle Barracks (Solar Durham)	0.492	0.646	0.008	0.126	5.000	12.005	15.779	0.438	-0.894	16.657	0.950	0.000
NT	London Heathrow	0.473	0.715	0.015	0.066	4.898	15.029	19.184	0.429	-3.811	12.833	0.695	0.000
NW	Rostherne No 2	0.498	0.646	0.009	0.315	2.694	12.775	16.466	0.513	-5.000	21.312	0.802	0.000
SC	Glasgow Bishopton	0.505	0.680	0.011	0.000	1.053	12.590	16.402	0.509	-2.992	15.476	0.507	0.000
SE	London Heathrow	0.484	0.772	0.006	0.266	1.335	13.996	18.523	0.375	-0.721	21.613	0.566	0.000
SO	Southampton Oceanographic Institute	0.438	0.692	0.015	0.405	0.141	14.745	18.715	0.345	-2.076	11.978	0.559	0.000
SW	Yeovilton Weather Station	0.448	0.623	0.008	0.258	3.476	13.254	17.898	0.337	0.705	21.707	0.801	0.000
WM	Birmingham Winterbourne 2 (Wind speeds/ Solar Coleshill)	0.471	0.692	0.010	0.163	4.385	13.392	17.480	0.368	-3.619	17.569	0.678	0.000
WN	Rostherne No 2	0.482	0.618	0.009	0.324	3.773	13.477	16.987	0.445	-3.926	18.249	0.679	0.000
WS	St. Athan	0.543	0.657	0.008	0.079	1.797	13.826	17.186	0.384	-1.910	17.068	0.776	0.000

The above table represents the final set of CWV parameters which have been optimised against NDM demand and weather data for gas years 2010/11 to 2017/18.

CWV Optimisation Summary Results

Optimisation Results – Overall R²

	Average Adjus	ted R-Squared
	2015	2020
EA	0.9912	0.9923
EM	0.9919	0.9934
NE	0.9867	0.9883
NO	0.9859	0.9893
NT	0.9930	0.9943
NW	0.9890	0.9913
SC	0.9892	0.9903
SE	0.9915	0.9929
SO	0.9918	0.9934
SW	0.9904	0.9908
WM	0.9921	0.9940
WN	0.9840	0.9859
WS	0.9833	0.9862

Every LDZ has seen an improvement in its overall \mathbf{R}^2 value under the new optimisation method.

Optimisation Results – Monthly MAPE

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	All
EA	3.66%	2.87%	4.05%	6.48%	8.11%	6.13%	7.06%	7.14%	5.66%	6.37%	4.45%	3.99%	5.52%
EM	3.70%	3.43%	4.38%	6.62%	8.19%	8.62%	8.93%	9.79%	8.22%	5.82%	4.42%	4.80%	6.43%
NE	4.16%	3.64%	5.93%	7.85%	8.14%	8.59%	7.42%	7.62%	7.58%	6.04%	4.99%	5.09%	6.43%
NO	3.98%	3.62%	5.07%	7.82%	8.74%	8.98%	7.60%	7.26%	8.20%	5.74%	4.10%	5.03%	6.45%
NT	3.00%	2.70%	3.49%	5.58%	6.28%	5.38%	5.27%	4.68%	5.09%	5.22%	3.67%	3.58%	4.57%
NW	3.36%	3.16%	4.47%	7.46%	7.53%	8.20%	7.14%	7.81%	9.05%	6.49%	3.83%	4.24%	6.07%
SC	3.44%	3.09%	4.28%	6.29%	7.27%	7.90%	9.04%	7.47%	7.60%	5.43%	3.64%	4.05%	5.82%
SE	3.20%	2.78%	3.84%	5.99%	7.32%	6.91%	6.78%	6.86%	5.96%	5.77%	3.78%	3.84%	5.27%
SO	3.54%	3.08%	4.45%	6.33%	6.86%	5.54%	8.69%	4.73%	5.21%	5.75%	4.98%	4.52%	5.32%
SW	3.69%	3.42%	5.18%	8.26%	8.16%	6.82%	7.21%	7.67%	7.17%	7.20%	4.55%	5.00%	6.21%
WM	3.93%	3.56%	4.45%	7.51%	7.70%	7.20%	7.59%	8.25%	7.84%	6.65%	4.38%	4.98%	6.18%
WN	4.24%	4.50%	5.03%	8.21%	9.60%	8.84%	7.75%	9.37%	8.22%	7.40%	4.29%	5.34%	6.91%
WS	4.12%	3.92%	5.97%	10.12%	10.92%	9.95%	10.78%	8.67%	9.46%	8.17%	4.92%	5.97%	7.77%

- Monthly MAPE value for all LDZ's
- Improvements have been made by the majority of LDZ's across the shoulder months
- 10 of 13 LDZ's have shown an overall improvement in total MAPE values

Optimisation Results – Overall RMSE

	Average RN	ISE (MWhs)
	2015	2020
EA	6636	6253
EM	9060	8528
NE	6301	5989
NO	5257	4760
NT	7748	7259
NW	10536	9647
SC	7330	7023
SE	8184	7584
SO	5956	5508
SW	5125	5101
WM	8155	7626
WN	1104	1059
WS	4097	3759

Every LDZ has seen an improvement in its overall average RMSE value under the new optimisation method.

Optimisation Results – Monthly RMSE

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	All
EA	8,117	6,375	7,654	7,739	6,608	3,919	2,877	2,878	3,411	6,057	7,248	8,207	6,253
EM	10,877	9,612	9,541	9,945	8,481	5,632	4,438	4,943	6,096	7,120	9,290	12,281	8,528
NE	7,393	6,405	8,150	7,788	5,434	4,127	2,461	2,574	3,891	5,063	6,506	8,100	5,989
NO	5,598	5,095	5,796	6,132	4,848	3,604	2,183	2,392	3,646	4,027	4,502	6,652	4,760
NT	8,777	7,852	8,606	9,512	7,095	4,665	3,218	3,272	4,538	6,876	7,899	9,972	7,259
NW	10,866	10,343	11,484	13,236	9,111	6,509	4,389	4,843	7,905	9,919	9,334	13,031	9,647
SC	8,060	7,235	8,081	8,888	6,970	5,414	4,478	4,190	6,392	6,741	6,778	9,050	7,023
SE	9,245	8,198	9,683	9,497	7,092	4,594	4,468	3,794	4,384	6,939	8,438	10,454	7,584
SO	6,893	6,043	7,006	6,944	4,755	2,760	2,406	1,689	2,878	4,801	6,971	8,014	5,508
SW	5,880	5,496	6,460	6,998	4,973	2,603	2,071	2,251	2,893	4,679	5,470	7,472	5,101
WM	9,791	8,746	8,636	9,778	6,638	4,308	3,301	3,698	5,224	7,086	8,155	11,181	7,626
WN	1,268	1,320	1,181	1,401	1,074	661	461	562	720	989	1,033	1,453	1,059
WS	4,360	3,724	4,546	5,118	3,953	2,416	1,898	1,689	2,799	3,347	3,957	5,213	3,759

- Monthly RMSE value for all LDZ's
- Improvements have been made by the majority of LDZ's across the shoulder months
- All LDZ's have improved RMSE values across the entire optimisation period

Changes to Cold weather cut-off's

	Cold	Weather Sensitiv	rity (I3)		Cold Wea	ather Upturn Thre	shold
	2015	2020	Change in value		2015	2020	Chan
EA	0.09	0.109	+ 0.019	EA	3	-0.235	
EM	0.05	0.138	+ 0.088	EM	3	-1.344	
NE	0.00	0.083	+ 0.083	NE	0	-1.261	
NO	0.15	0.126	-0.024	NO	3	5.000	+
NT	0.22	0.066	-0.154	NT	3	4.898	+
NW	0.30	0.315	+ 0.015	NW	3	2.694	-
SC	0.15	0.000	-0.150	SC	3	1.053	-
SE	0.33	0.266	-0.064	SE	3	1.335	-
SO	0.24	0.405	+ 0.165	SO	3	0.141	-
SW	0.22	0.258	+ 0.038	SW	3	3.476	+
WM	0.14	0.163	+ 0.023	WM	3	4.385	+
WN	0.30	0.324	+ 0.024	WN	3	3.773	+
WS	0.11	0.079	-0.031	WS	3	1.797	-

There has been a noticeable increase in the range of Cold weather upturn thresholds across all LDZ's. As mentioned this value is driven by the optimisation methodology which finds the best overall fit when compared to observed Demand

Changes to Warm weather cut-off's

								Slope Relating	to
	Lower W	arm Weather (Cut-Off (V1)	Upper W	arm Weather (Cut-Off (V2)	Warm Weather Cut-Off (q)		
	2015	2020	Percentage	2015	2020	Percentage	2015	2020	Percentage
	Parameters	Parameters	difference	Parameters	Parameters	difference	Parameters	Parameters	difference
EA	15.3	15.131	🛬 -1.10%	19.2	18.885	🛬 -1.64%	0.34	0.368	8.14%
EM	13.5	13.008	🛬 -3.65%	16.8	16.897	a.58% 🖓	0.49	0.424	🛬 -13.42%
NE	14.7	12.924	🛬 -12.08%	17.9	16.679	🛬 -6.82%	0.38	0.446	🐬 17.34%
NO	13	12.005	🛬 -7.65%	16	15.779	🛬 -1.38%	0.46	0.438	🛬 -4.83%
NT	15.2	15.029	🛬 -1.13%	19.2	19.184	🛬 -0.08%	0.38	0.429	🐬 12.91%
NW	14.9	12.775	🛬 -14.26%	18	16.466	🛬 -8.52%	0.38	0.513	34.88%
SC	12.2	12.590	🐬 3.19%	16	16.402	🔊 2.51%	0.64	0.509	🛬 -20.50%
SE	15.1	13.996	🛬 -7.31%	18.7	18.523	🛬 -0.94%	0.38	0.375	🛬 -1.37%
SO	14.8	14.745	🛬 -0.37%	18.2	18.715	🔊 2.83%	0.37	0.345	🖄 -6.85%
SW	14.2	13.254	🛬 -6.66%	17.3	17.898	3.46%	0.42	0.337	🛬 -19.74%
WM	13.7	13.392	🛬 -2.25%	17.2	17.480	🐬 1.63%	0.43	0.368	🛬 -14.32%
WN	14.9	13.477	🛬 -9.55%	18	16.987	🛬 -5.63%	0.38	0.445	🐬 17.11%
WS	14.8	13.826	🛬 -6.58%	17.9	17.186	🛬 -3.99%	0.46	0.384	🖄 -16.42%

Changes to maximum CWV values

LDZ	Current max CWV	Proposed max CWV	Change in max value	Percentage change
EA	16.63	16.51	-0.12	-0.72%
EM	15.12	14.66	-0.46	-3.04%
NE	15.92	14.60	-1.32	-8.29%
NO	14.38	13.66	-0.72	-5.01%
NT	16.72	16.81	0.09	6.54%
NW	16.08	14.67	-1.41	-8.77%
SC	14.63	14.53	-0.10	-0.68%
SE	16.47	15.69	-0.78	-4.74%
so	16.06	16.11	0.05	a 0.31%
SW	15.50	14.82	-0.68	-4.39%
WM	15.21	14.90	-0.31	-2.04%
WN	16.08	15.04	-1.04	-6.47%
WS	16.23	15.12	-1.11	-6.84%

The Max CWV value has been reduced in 11 of 13 LDZ's, only NT and SO have been increased.

Count of Maximum CWV values

LDZ	2015 Parameters	2020 Parameters
EA	203	267
EM	282	228
NE	114	234
NO	92	108
NT	211	227
NW	111	198
SC	96	54
SE	291	309
so	285	192
SW	253	113
WM	178	160
WN	111	163
WS	68	91
Total	2295	2344

The number of days the maximum value of CWV has been reached during the optimisation period (Gas Years 2010/11 up to and incl. 2017/18)

- The reduction in NE's max CWV of 8.29% has lead to a 105.3% increase in the number of days at max CWV
- Overall the number of Gas Days at maximum CWV value has increased by a total of 49 across all LDZ's

Conclusions

- When compared to the previous CWV formula, the newly proposed parameters have lowered the value of the majority of LDZ's maximum CWV. This has lead to a slight increase in the number of gas days which have reached the newly optimised maximum CWV across all LDZ's
- The associated R-squared value has increased for each LDZ, meaning each set of optimised parameters results in a model with data closer to the fitted regression line.
- Improvements have been made in the MAPE and RMSE values across the majority of LDZ's during shoulder months
- DESC are now asked to provide approval for the use of the revised parameters detailed in this meeting for use from 1st October 2020

Next Steps

- The CWV optimisation process is complete
- The final set of optimum parameters and the revised formula will be used to derive a new CWV weather history (back to 1960)
- In addition the revised 1 in 20 peak CWVs can be calculated, although these will not be directly comparable with the existing values due to the formula change
- This CWV history will be used for demand modelling in 2020 and form the basis of the SNCWV calculations (see next agenda item)
- The daily values of SNET and SNES for each LDZ will be made available