

DESC Technical Work group

Seasonal Normal Review: Use of CCM Increments

30 July 2014

Background

- Current Seasonal Normal Basis (SNCWV) introduced in October 2010
 - Incorporated some outputs from Met Office EP2 Project used estimated climate change increments
- UNC now states SNCWV should be based on output derived from 'Climate Change Methodology' (CCM)
- Requested outputs of CCM Project (updated)
 - 50+ years hourly historic data adjusted for estimated impacts of climate change v base year 2011/12
 - Predicted hourly average values for Gas Years 2012 to 2025
 - Predicted hourly increments difference between base year and forecast year
- Stakeholder meeting on Nov 25th agreed how the outputs will be used in defining SNCWV for G.Yr 2015 onwards

Use of Project Deliverables

Deliverables:

- 1) An adjusted view of historic hourly weather datasets (derived from WSSM) reflecting estimated impacts of climate change based on results from base year 2011/12
- a) Predicted hourly climatological average values for period 1st October 2012 to 30th September 2025 based on predicted impact of climate change trends for future period b) Predicted hourly increments values – difference between predicted hourly climatological average values (i.e. from 2a) and base year (2011/12) averages

respect > commitment > teamwork

Seasonal Normal Review & CWV Optimisation Timeline

KEY:

CWV Optimisation Derivation of SNCWV

respect > commitment > teamwork

Seasonal Normal Review – Q3 Objectives

- Proposed plan for developing Seasonal Normal approach document
- Follow agreed approach for using CCM output:
 - Identify [x] period and average increment values
 - Apply increments to adjusted history
 - Using adjusted history with increments applied calculate a set of daily CWVs for period 1st October 1960 to 30th September 2012
 - Q. SNCWV will be calculated using history no later than 30/09/2012?
 - During Q3 this will be done using <u>EXISTING</u> parameters
 - Select the Mean or Median for determining daily CWV values
 - Performed for 4 Trial LDZs ?
- Review shape and confirm level of smoothing (if required)
- Document the approach to deriving the new Seasonal Normal basis and obtain DESC sign-off

Identify [X] period and Average Increment values

- Following DESC's approval of the CCM datasets, attention can be drawn to using the data in the derivation of Seasonal Normal
- Xoserve have reviewed the data for 4 LDZs, namely those selected by TWG for the CWV Optimisation trial analysis - SC, NE, WM and SW
- To assist in the decision making of "selecting [x] period for averaging the increment values", the predicted hourly climatological average values (deliverable 2a) have been used, referred to as 'Projections'
- The 'Projections' will not be used in the calculation of the SNCWV, however they are being used to help determine which period should be used when applying the increment values

Identify [X] period and Average Increment values

- Data files used for analysis : Temperature_WeatherStationID_Projections_2012_2025.txt
- The 2 hourly timeslots used in the Actual Temperature (AT)
 calculation within the CWV formula have been selected with the
 appropriate weighting then applied in order to derive a 'Gas
 Weighted' daily average temperature
- Met Office supplied data at GMT, analysis at this stage has not corrected this to 'local time', the conversion will need to happen for the 'real' analysis

SC Projections - 'Gas Weighted' Avge. Daily Temp

Gas Years 2015 to 2019

SC Projections – Gas Years vs Avge. Profile

SC Projections - 'Gas Weighted' Avge. Annual Temp

Gas Years 2015 to 2019 and Overall Average

SC Increments – Gas Years vs Avge. Profile

Note: Hourly increments will be applied to the adjusted history

NE Projections - 'Gas Weighted' Avge. Daily Temp

NE Projections – Gas Years vs Avge. Profile

NE Projections - 'Gas Weighted' Avge. Annual Temp

WM Projections - 'Gas Weighted' Avge. Daily Temp

WM Projections – Gas Years vs Avge. Profile

WM Projections - 'Gas Weighted' Avge. Annual Temp

SW Projections - 'Gas Weighted' Avge. Daily Temp

SW Projections – Gas Years vs Avge. Profile

SW Projections - 'Gas Weighted' Avge. Annual Temp

Options & Next Steps

- Does the analysis carried out provide enough information to select [x] period for averaging the increments? What, if any, additional information could be supplied?
- No obvious individual year selection, perhaps best to use average of all 5 years?
- Hopefully reach decision on [x] period today in order that they can be applied
- DESC / TWG Meetings in August & September to progress both CWV Optimisation and Seasonal Normal Review, along with adhoc correspondence to assist in decision making

