respect 》commitment 》 teamwork

DESC Technical Work group

Seasonal Normal Review: Applying CCM Increments and Calculate CWV History

18 August 2014

- Since material relating to choice of period for increments has been published, attention has turned to Steps 2 and 3 in the diagram reflecting agreement on how the CCM data should be used
- Xoserve have attempted to interpret the diagram into several steps in order to calculate a draft SNCWV for NE LDZ - one of the trial LDZs with minimal requirements for gap filling
- Ultimately an approach document for calculating the SNCWV needs to be produced and signed off by DESC by the end of Q3 2014
respect >commitment > teamwork

Use of Project Deliverables

Deliverables:

1) An adjusted view of historic hourly weather datasets (derived from WSSM) reflecting estimated impacts of climate change based on results from base year 2011/12
2) a) Predicted hourly climatological average values for period $1^{\text {st }}$ October 2012 to $30^{\text {th }}$ September 2025 based on predicted impact of climate change trends for future period b) Predicted hourly increments values - difference between predicted hourly climatological xuserve average values (i.e. from 2a) and base year (2011/12) averages

Step 2 "Apply Average Increment values to Adjusted history (rebasing to [X] period)"

- For testing purposes it is assumed that ' $[\mathrm{X}]$ period’ is 5 years
- Step2.1: Take CCM data file for increments - ‘Temperature - weather station ID_increments_2012_2025' (Met Office file provided in GMT)
- Step 2.2: Convert data into Local Time and select increments from period 01/10/2015 to 01/10/2020 (5 year period)
- Step 2.3: Calculate the average hourly increment value for each calendar day
- Rounded to 1 dcp - 29 ${ }^{\text {th }}$ Feb not included
- Step 2.4: Take CCM data file for adjusted WSSM history - ‘Temperature weather station ID_adjhist' (Met Office file provided in GMT)
respect >commitment > teamwork

Step 2 "Apply Average Increment values to Adjusted history (rebasing to [X] period)"

- Step 2.5: For records in adjhist where there are missing values (-32768) apply E.On fill-in methodology
- Note the WSSM 'filled-in' values from the equivalent missing timeslots cannot be used as they have not been adjusted for Climate Change
- Step 2.6: Convert data into Local Time and select all records - 01/01/1960 to 30/09/2012
- Step 2.7: Add the average hourly increment value (Step 2.3) for each calendar day to all applicable records in adjhist thereby rebasing to $[X]$ period
- Rounded to 1 dcp
- Calendar day $29^{\text {th }}$ Feb records in history use the combined average hourly increment value from $28^{\text {th }}$ Feb and $1^{\text {st }}$ March
- Step 2.8: Adjusted values from Step 2.7 are now ready to be used in Step 3 of overall approach

Use of Project Deliverables

Deliverables:

1) An adjusted view of historic hourly weather datasets (derived from WSSM) reflecting estimated impacts of climate change based on results from base year 2011/12
2) a) Predicted hourly climatological average values for period $1^{\text {st }}$ October 2012 to $30^{\text {th }}$ September 2025 based on predicted impact of climate change trends for future period b) Predicted hourly increments values - difference between predicted hourly climatological

xıserve

 average values (i.e. from 2a) and base year (2011/12) averages
Step 3 "Using the further adjusted values from Step 2 to calculate the daily CWVs"

- Step 3.1 Take the CCM data for Wind Speed. 'Windspeed - weather station ID_adjhist' (Met Office file provided in GMT)
- Step 3.2 For records where there are missing values (-32768) apply E.On fillin methodology
- Note the WSSM values from the equivalent missing timeslots can be used as there is no adjustment for Climate Change
- Step 3.3 Convert wind speed data into Local Time and select all records 01/10/1960 to 30/09/2012
- Step 3.4 Convert wind speed data from m / s into knotts using conversion of 1.943844
- Rounded to whole numbers
- Step 3.5 Convert temperature and wind speed data into daily average values by gas day
- Using 5am to 3am timeslots for Temperature and existing timeslots for Wind speed
- Step 3.6 Using the data from Step 3.5 calculate a set of daily CWVs using optimised parameters (for the purposes of this 'walk through' exercise the current parameters have been used)
- CWVs calculated to 2 dcps
- Daily CWV data series generated from 01/10/1960 to 30/09/2012
- Remaining part of Step 3: "determine a Seasonal Average by way of mean or median of daily values"
- Step 3.7 Using the data series generated in Step 3.6 calculate the mean (or median) of each gas day to form an SNCWV profile
- Note: There has been no smoothing applied to these values

Draft SNCWV－Using MEAN of daily CWVs

NE－Draft SNCWV（Mean）vs Current SNCWV

respect＞commitment＞teamwork

Draft SNCWV - Using MEDIAN of daily CWVs

respect >commitment > teamwork

Degree Day Analysis

- One measure which is often used in the gas industry to summarise the weather experienced is Degree Day (DD) analysis
- This can also be used to assess how the Seasonal Normal basis has performed against recent years
- A Degree Day is calculated as the difference between a threshold value and the actual CWV
- Lower figure = warmer weather / Higher figure = colder weather
- The Degree Day (DD) can then be used as a single figure which represents weather trends for any given period
- Xoserve has used this approach to assess recent gas years for NE at an annual level and by Winter (Oct to Mar) and Summer (Apr to Oct)
- Calculated by summing the daily differences for relevant period

Degree Day Analysis - NE - Annual Results

- SNCWV based on current Seasonal Normal

respect $>$ commitment $>$ teamwork

Degree Day Analysis - NE - Winter Results

- SNCWV based on current Seasonal Normal

respect $>$ commitment $>$ teamwork

Degree Day Analysis - NE - Summer Results

- SNCWV based on current Seasonal Normal
respect >commitment > teamwork

Options \& Next Steps

- Decision on $[\mathrm{X}]$ period for increments needs to be finalised
- TWG comments welcome on Xoserve's interpretation of DESC high level agreement on use of CCM data files

