2

centrica

Initial benchmark results of CWV calculation

Review of the CWV formula

I have agreed to:

- perform review of existing formula and provide benchmarking figures
- prepare analysis around new formula options utilising additional weather data
- produce optimised values for each LDZ for final formula that DESC agree upon

The aim today is to share initial results for 3 LDZs (EA, NE, NT) and how the analysis was produced.

Gather feedback then produce the results for all LDZs.

Expected Approach

- Provide more visibility on the method of CWV optimisation.
- Produce analysis following a structured approached. Firstly, producing results on the latest optimisation of the current CWV definition – the benchmark results, against which improvements are measured.
- Sharing the analysis tool, so any cross collaboration is like for like, against the benchmark results. Therefore Excel has been chosen as the analysis tool.

Review of CWV Optimisation Tool

- CWV optimisation is a complicated exercise.
- The tool has been shared with Xoserve to "audit" for accuracy and correct understanding of the approach.
- Refinements have been made along the way.

Initial Approach

- Gas years chosen 2010 to 2017. Includes cold winter in 2010, summer 2018. Focused upon recent years, consistent with approach previously used.
- NDM measurements provided by Xoserve, excluding Bad days.
- Options allow to exclude a years inputs into the SNET or CWV parameters. All years have been included.
- Further details noted in "General Steps for CWV Optimisation.pdf"

Parameter Interpretations

Parameter	Comments
Effective Temperature/AT Weight (ET calculation)	Determines the combination of AT/ET used
Effective Temperature Weight (I1)	What proportion of CWV is ET Term (0.7) & SNET (0.3)
Wind Chill Weight (I2)	Rule of thumb each -0.01 reduces CWV by 0.1 (AT=0, WS=10)
Cold Weather Sensitivity (I3)	A greater cold weather effect is applied
Cold Weather Upturn Threshold (V0)	below this threshold
Lower Warm Weather Cut-Off (V1)	Attempts to model a lower demand response as
Upper Warm Weather Cut-Off (V2)	temperature increase. These in combination determines
Slope Relating to Warm Weather Cut-Off (q)	Max CWV
Wind Chill Wind Cut-Off (W0)	Additional wind chill effect below V0
Wind Chill Temperature Cut-Off (T0)	Approx. temperature cut-off when wind has no influence on CWV

Results: LDZ EA

Parameter	2015	2020	Comments
Effective Temperature/AT Weight	0.500	0.456	more weighting is applied to todays AT
Effective Temperature Weight (I1)	0.719	0.723	
Wind Chill Weight (I2)	0.014	0.012	
Cold Weather Sensitivity (I3)	0.090	0.255	A greater cold weather effect is applied
Cold Weather Upturn Threshold (V0)	3.000	2.060	below 2.06c
Lower Warm Weather Cut-Off (V1)	15.300	15.021	
Upper Warm Weather Cut-Off (V2)	19.200	19.054	Max CWV little changed 16.66 v 16.62
Slope Relating to Warm Weather Cut-Off (q)	0.340	0.407	
Wind Chill Wind Cut-Off (W0)	0.000	-0.366	
Wind Chill Temperature Cut-Off (T0)	14.000	14.375	
R2	0.9910	0.9911	Small improvement within typical range

Jason Blackmore. Initial Benchmark Results of CWV Calculation.

More info see: CWV - Temp and Wind Speed Analysis.pdf

Results: LDZ NE

Parameter	2015	2020	Comments
Effective Temperature/AT Weight	0.500	0.472	more weighting is applied to todays AT
Effective Temperature Weight (I1)	0.676	0.647	
Wind Chill Weight (I2)	0.016	0.018	
Cold Weather Sensitivity (I3)	0.000	0.063	If AT = 0 & Wind =10, CWV = -2.84 v -2.39
Cold Weather Upturn Threshold (V0)	0.000	0.177	
Lower Warm Weather Cut-Off (V1)	14.700	13.838	
Upper Warm Weather Cut-Off (V2)	17.900	17.334	Max CWV changed 15.49 v 15.92
Slope Relating to Warm Weather Cut-Off (q)	0.380	0.471	
Wind Chill Wind Cut-Off (W0)	0.000	0.847	
Wind Chill Temperature Cut-Off (T0)	14.000	14.829	
R2	0.9862	0.9864	Small improvement within typical range

SNET: LDZ NE

Jason Blackmore. Initial Benchmark Results of CWV Calculation.

Results: LDZ NT

Parameter	2015	2020	Comments
Effective Temperature/AT Weight	0.500	0.484	more weighting is applied to todays AT
Effective Temperature Weight (I1)	0.727	0.738	
Wind Chill Weight (I2)	0.015	0.014	
Cold Weather Sensitivity (I3)	0.220	0.293	If AT = 0 & Wind =10, CWV = -3.41 v -3.99
Cold Weather Upturn Threshold (V0)	3.000	2.520	
Lower Warm Weather Cut-Off (V1)	15.200	14.687	
Upper Warm Weather Cut-Off (V2)	19.200	19.419	Max CWV changed 16.78 v 16.72
Slope Relating to Warm Weather Cut-Off (q)	0.380	0.442	
Wind Chill Wind Cut-Off (W0)	0.000	-1.650	
Wind Chill Temperature Cut-Off (T0)	14.000	14.263	
R2	0.9928	0.9929	Small improvement within typical range

Jason Blackmore. Initial Benchmark Results of CWV Calculation.

Summary of Results

- No significant changes which appears to be consistent with prior updates
- More significance applied to todays AT in the ET calculation
- Cold Weather Upturn is greater
- Suggests little scope that optimising the existing CWV definition will reduce UIG

2015	EA	NE	NT
R2	0.9910	0.9862	0.9928

2020	EA	NE	NT
R2	0.9911	0.9864	0.9929

Continue with producing a series of benchmark results for the reminding LDZs

Input sought on the benchmark results to be reported

Tool will be amended to report on these benchmark results

Continue more in-depth improvements to the CWV