#### **GL** Noble Denton



# Aberdeen SMER SC006

7<sup>th</sup> October 2013



www.gl-nobledenton.com

# **Overview**

- Comparison of Individual Reports
- Revised Methodology
  - Calculation of Reference Flow
- Error Quantification
  - Revised Results
  - Correlation Significance
- Summary of Error Periods



# **Comparison of Individual Reports**

- Individual reports are largely supportive of each other
- Description of the error and evidence for counter readings are similar
- Minor differences in interpretation of stable test periods
  - ITEs reached agreement on data
- Difference in method for correction of flow rate instability
  - ITEs agreed that most appropriate method was linear correction using relevant timeframes for reference flow



# **Comparison of Individual Reports**

- Difference in excluded test results
  - ITEs agreed on exclusion of test 1, 9 and 11 results for 99950 counter reading
  - Based on comparison with CFD analysis
- Difference in treatment of errors (dependence on process conditions)
  - ITEs agreed that both methods were valid based on the results presented in each report
  - Results differed mainly based on method for correction of flow rate instability
  - ITEs agreed upon statistical analysis of correlation significance of revised results



# **Calculation of Reference Flow**

- Flow rate drift assumed to be linear over the duration of each test
- Start and end flow rates averaged from stable period (00000 counter reading)
- Linear interpolation carried out to produce reference flow rate
- Results for each counter reading referenced to the corresponding period of reference flow rate
  Calculation of Reference Flow (Test 7)
- Experimental errors recalculated
- CFD errors recalculated
  - Referenced to experimental results





### **Calculation of Reference Flow**





#### **Results - Experimental**





### **Results - CFD**









| Counter<br>Reading | Experimental Error (%) |           | CFD Error (%) |              | Difference in Mean<br>(% relative) |
|--------------------|------------------------|-----------|---------------|--------------|------------------------------------|
|                    | Mean                   | Std. Dev. | Mean          | Std.<br>Dev. |                                    |
| 99985              | 26.2 %                 | 0.7 %     | 25.8 %        | 1.0 %        | -1.4 %                             |
| 99950              | 70.6 %                 | 3.1 %     | 70.6 %        | 0.7 %        | 0.0 %                              |

- High standard deviations at low DPs
  - Large discrepancies between experimental and CFD results for tests 1, 9 and 11 at 99950 counter reading



| Counter<br>Reading | Experimental Error (%) |           | CFD Error (%) |       | Difference in Mean<br>(% relative) |  |
|--------------------|------------------------|-----------|---------------|-------|------------------------------------|--|
|                    | Mean                   | Std. Dev. | Mean          | Std.  |                                    |  |
|                    |                        |           |               | Dev.  |                                    |  |
| 99950              | 70.6 %                 | 3.1 %     | 70.6 %        | 0.7 % | 0.0 %                              |  |
| (All)              |                        |           |               |       |                                    |  |
| 99950              | 71.4 %                 | 0.6 %     | 70.9 %        | 0.5 % | -0.7 %                             |  |
| (Exclusions)       |                        |           |               |       |                                    |  |

- Excluding results from tests 1, 9 and 11 at 99950 counter reading significantly reduces standard deviation
  - Demonstrates that the two data sets are more reliable











# **Correlation Significance**

- Errors plotted against Reynolds Number
- Coefficients of determination for the 99985 and 99950 datasets are 0.536 and 0.549 respectively
- Correlation of each dataset is significant based on a two-sided T-test with 95% confidence interval
- Therefore errors should be determined based on flow rates (i.e. not a single correction factor



#### **Correlation Significance**





#### **Correlation Significance**





## **Calculation of Flow Rate Bands**

- 1, 3 and 4.5 Mscm/d flow rates used during testing
- Corrected to measured flow rates using corresponding error values
- Midpoint between flow rates used as cut-off point
- Error Period 1 (99985 counter reading)

|        | Test Flow<br>(Mscm/d) | Error (%) | Measured Flow<br>(Mscm/d) | Flow Range<br>(Mscm/d) | # of Days | Correction<br>Factor |
|--------|-----------------------|-----------|---------------------------|------------------------|-----------|----------------------|
| Low    | 1                     | 25.716    | 0.743                     | < 1.477                | 275       | 1.346188             |
| Medium | 3                     | 26.305    | 2.211                     | 1.477 to 2.755         | 96        | 1.356940             |
| High   | 4.5                   | 26.677    | 3.300                     | ≥ 2.755                | 0         | 1.363833             |

#### • Error Period 2 (99950 counter reading)

|        | Test Flow<br>(Mscm/d) | Error (%) | Measured Flow<br>(Mscm/d) | Flow Range<br>(Mscm/d) | # of Days | Correction<br>Factor |
|--------|-----------------------|-----------|---------------------------|------------------------|-----------|----------------------|
| Low    | 1                     | 70.437    | 0.296                     | < 0.577                | 15        | 3.382663             |
| Medium | 3                     | 71.405    | 0.858                     | 0.577 to 1.066         | 0         | 3.497065             |
| High   | 4.5                   | 71.677    | 1.275                     | ≥ 1.066                | 0         | 3.530691             |



# **Summary of First Error Period**

- 21<sup>st</sup> July 2009 to 27<sup>th</sup> July 2010
- Counter reading of 99985 based on
  - ~31% step change in flow rate when the plate was inserted
  - 99885 values stamped on the carrier information plate
  - Pattern of contamination compared to physical measurements
- Error is dependent on flow rate
- Error in low flow rate band for 275 days
  - 25.716 % (under-registration)
- Error in medium flow rate band for 96 days
  - 26.305 % (under-registration)



# **Summary of Second Error Period**

- 27<sup>th</sup> July 2010 to 10<sup>th</sup> August 2010
- Counter reading of 99950 based on
  - ~69% step change in flow rate when the plate location was corrected
  - 9995 value stamped on the carrier information plate
  - Interviews with mechanical operatives
- Error is dependent on flow rate
- Error in low flow rate band for 15 days
  - 70.437 % (under-registration)



### **GL** Noble Denton





#### Thank you. Any Questions?

www.gl-nobledenton.com