Action 804 0498/0502 Additional Support Data for CO₂ Impact Assessment

David O'Donnell 1 Dec 2014

Background

- CATS/TGPP existing NTS entry CO₂ spec is 2.9 mol%
- CATS & TGLP have requested a revised CO₂ spec to 4 mol%
- Two main benefits
 - Avoid restricting throughput of existing gas fields
 - Avoid risk of potential new gas fields not being developed e.g. Jackdaw
 - Previous assessment considered impact of CO₂ emissions for 3 scenarios around a new gas field project in period 2019 to 2040
 - \circ Scenario1 Offshore CO₂ removal
 - Scenario 2 Onshore CO₂ removal
 - Scenario 3 NTS Delivery at 4mol%
- Additional actions requested
 - Consider overall CO₂ impact of new field on overall CATS flows
 - Separate the cost of Amine unit from CO₂ impact assessment

٠

CO₂ Assessment of Total Gas Flow in CATS

- Single field CO₂ content will be diluted by other field flows into CATS
- Analysis of CATS forecast flows post 2019 shows gas exports on spec to NTS (CO₂ <2.9 mol%) but could increase during field outages such as summer maintenance periods
- Assess annual impact of CO₂ excursions on Option 2 (Onshore CO₂ removal) & Option 3 (NTS CO₂ Spec increase)
- Assumptions
 - CO₂ content of inlet gas 4 mol% for limited period 10% of year (note conservative assumption, actual time when CATS gas at 4 mol% will be less)
 - Flow rates during high CO_2 flows reduced to circa 450 mmscfd (this would occur as only the high CO_2 field(s) flowing to lead to the high CO_2)
 - Amine units required to remain on "warm standby" duty when not in use continued CO₂ emissions
 - CO₂ ETS charges and downstream usage split as per DECC & Grid data

Annual CO₂ Impact Assessment - Total CATS flow

Example of Annual CO ₂ Impact for overall CATS flow	Scenario 2 Onshore CO ₂	Scenario 3 NTS Delivery at
	Removal	4 mol % CO ₂
CO ₂ Removed by Amine unit (4 mol% to 2.9 mol%) (te/d)	305	
CO_2 in fuel gas consumed by Operational Amine unit (te/d)	138	
Total CO ₂ Generated while spec exceeded (te/yr)	15,948	
CO ₂ from Amine unit on standby (te/d)	122	
CO ₂ from Amine unit on standby (te/yr)	40,138	
Total Additonal CO ₂ Generated (te/yr)	56,086	11,439

CO ₂ Total ETS Traded Cost (£)	£280,430	£14,871
CO ₂ Total Traded Cost with Carbon Price Support (£)		£60,398
Total CO ₂ Cost Traded & Carbon Price Support (£)	£280,430	£75,269
CO ₂ Total Non-Traded Cost (£) (non-ETS consumption)		£377,490
Total Cost (£/yr)	£280,779	£452,759

Conclusions

- In normal operation, single field CO₂ at 4 mol% will be diluted by fields exporting into CATS pipeline with lower CO₂
- CO₂ removal required when blending unavailable through field outages
 e.g summer maintenance programme or unplanned trips/outages
- 5x greater CO₂ emissions per year from occasional use of amine units than NTS delivery at 4 mol%
- c.3.7x greater emissions cost per year for removal by amine compared to NTS delivery at 4 mol% (excluding non-ETS consumption)
- Increased emissions from amine unit fuel gas usage and from operational standby of unit when CATS gas meets NTS CO₂ spec
- Installed onshore amine units c. £200M (BP estimate)
- Proposers contend that the installation of Amine units is worse for the environment and an inefficient use of capital for the rare occasions when offshore blending does not occur

