

Background

- CATS/TGPP existing CO₂ spec is 2.9 mol%
- CATS & TGLP have requested a revised CO₂ spec to 4 mol%
- Two main benefits
 - Avoid restricting throughput of existing gas fields
 - Avoid risk of potential new gas fields not being developed e.g. Jackdaw
- BP assessment of forward CO₂ content
 - o 2014-2018
 - CO₂ levels of >2.9 mol% for max of 5% of time at a peak of 4 mol%
 - Occur in summer (2-3 days)
 - Estimate total impact 0.03 mol% on annual average
 - o **2019+**
 - Potential new gas fields developed
 - Summer months between 2.66 mol% and 3.6 mol% (max 4 mol%)
 - Non-summer months between 2.66 mol% and 3 mol% (max 3.57 mol%)

Action 804 – Assessment of Environmental Impact

- Considered max CO₂ emissions and annual forecast cost for 3 scenarios around a new gas field project in period 2019 to 2040
- Scenario1 Offshore CO₂ removal
 - Amine unit installed offshore to remove CO₂ down to 2.9 mol% prior to entry into CATS pipeline
- Scenario 2 Onshore CO₂ removal
 - Amine unit installed onshore to remove CO₂ down to 2.9 mol% prior to entry on to the NTS
- Scenario 3 NTS Delivery at 4mol%
 - Natural gas is delivered to NTS with a 4 mol% CO₂ content
- In all scenarios the following are calculated:
 - Amount of CO₂ removed plus emissions from associated fuel gas
 - Forecast cost of the amine installation where required
 - o Forecast cost of annual emissions from the process

Action 804 – Assessment of Environmental Impact

Total Impact of Gas From Field Development over Field Life

Assessment of CO ₂ Removal Cost For Field Development (2019-2040)	Scenario 1 Offshore CO2 Removal	Scenario 2 Onshore CO2 Removal	Scenario 3 NTS Delivery at 4 mol % CO2
CO ₂ Removed by Amine unit (4 mol% to 2.9 mol%) (te)	566,214	612,989	0
CO ₂ in fuel gas consumed by Amine unit (te)	261,121	266,040	0
CO ₂ above 2.9 mol% emitted by consumers (te)	0	0	545,022
Total additional CO ₂ emissions (te)	827,335	879,029	545,022
CO ₂ Total ETS Traded Cost (£)	£12,831,701	£13,197,852	£2,198,459
CO ₂ Total Traded Cost with Carbon Price Support (£)	£0	£0	£7,352,646
CO ₂ Total Non-Traded Cost (£) (non-ETS consumption)	£0	£0	£20,869,531
Cost of Amine Unit (£)	£122,000,000	£200,000,000	£0
Total Cost (£)	£134,831,701	£213,197,852	£30,420,636
Cost per Tonne (£)	£163	£243	£56
Cost per Tonne (excluding Non-Traded) (£)	£163	£243	£18

Action 804 – Assessment of Environmental Impact

Average Annual Impact of Gas From Field Development

Assessment of CO ₂ Removal Cost For Field Development (2019-2040) Annual Average	Scenario 1 Offshore CO2 Removal	Scenario 2 Onshore CO2 Removal	Scenario 3 NTS Delivery at 4 mol % CO2
CO ₂ Removed by Amine unit (4 mol% to 2.9 mol%) (te/yr)	25,737	27,863	0
CO ₂ in fuel gas consumed by Amine unit (te/yr)	11,869	12,093	0
CO ₂ above 2.9 mol% emitted by consumers (te/yr)	0	0	24,774
Total additional CO ₂ emissions (te/yr)	37,606	39,956	24,774
CO ₂ Total ETS Traded Cost (£/yr)	£583,259	£599,902	£99,930

CO ₂ Total ETS Traded Cost (£/yr)	£583,259	£599,902	£99,930
CO ₂ Total Traded Cost with Carbon Price Support (£/yr)			£334,211
CO ₂ Total Non-Traded Cost (£/yr) (non-ETS consumption)			£948,615
Cost of Amine Unit (£/yr)	£5,545,455	£9,090,909	
Total Cost (£/yr)	£6,128,714	£9,690,811	£1,382,756

Impact on Total UK CO₂ Emissions

Additional CO ₂ Emissions as a % of total UK CO ₂ Emissions (%)	0.0125%	0.0133%	0.0082%
	0.0125/0	0.013370	0.0002/0

Action 804 – Calculation Assumptions

Data	Source
CO ₂ Content	Operator estimate - single field at 4 mol%. Expect CATS commingled gas to be lower on average
Amine Unit costs	BP estimates - Amine unit fully installed cost
Field Profile	Field Operator
ETS Carbon Valuation	DECC Updated Energy & Emissions Projections - September 2014, 'Carbon Prices - Industry and Services' upto 2035 (2036+ Traded price equals non-traded price)
Carbon Valuation with Carbon Price Support	DECC Updated Energy & Emissions Projections - September 2014, 'Carbon Prices - Electricity Supply Sector' up to 2035 (2036+ inflated at 6% per year)
Carbon Valuation 'Non Traded'	DECC Appraisal Guide 2014, Table 1-20: supporting the toolkit and guidance - Central Prices
Total UK Forecast CO ₂ Emissions	DECC Updated Energy & Emissions Projections - September 2014, Annex B Carbon Dioxide Emissions by Source
Emissions cost by User Group	Gas Usage split by gas demand Users (ETS, Carbon Support, non-ETS) - Nationalgrid, Future- Energy-Scenarios pg.168

Action 804 – Conclusions

- Single field case is the max impact case assume full field CO₂ at 4 mol%, in reality will be diluted by other gas
- CO₂ removal at "source" (scenarios 1 & 2) creates 60% more CO₂ emissions than emitting by user (scenario 3)
- Increased electrical load to drive amine units will further add to emission in Scenarios 1 & 2 but are not included in model
- No account taken of additional Benzene and Methane emitted from amine units
- Cost of mitigation at "source" is between 3x and 4.5x more costly per tonne of CO₂ than emitting by user (and between 9x and 14x more costly when non-traded uses are excluded)
- Dilution of CO₂ by other gas will reduce overall additional CO₂ emissions but will make amine solutions (scenarios 1 & 2) more costly relative to scenario 3 – similar capital to remove less CO₂

