X Serve

Demand Estimation Technical Forum

3rd June 2005

Presentational Material

Demand Estimation Technical Forum 3rd June 2005

10:00 Presentation of work done to date

Modelling Basis

Large NDM

Small NDM

Discussion of results & issues arising

12:00 Lunch

(13:30 Meeting of Demand Estimation Sub-Committee)

Consultation Process : NDM Demand Models & EUCs

3 June	Technical Forum / DESC meeting (to guide analysis)	(H 1.8.1)
30 June	NDM proposals published	(H 1.8.1)
15 July	Users make representation by now	(H 1.8.3)
	Consultation (DESC meeting 25 July)	(H 1.8.4/5/6)
15 Aug	Final proposals published by now	(H 1.9.1)

Consultation Process - from Final Proposals

Transporters' Final proposals published (say date X)

no later than 15 August

- Transporter or User application for disapproval to Ofgem (say date Y)
 by 5 business days of date X
- Ofgem determination (if required)

by 5 business days of date Y

Modelling Basis

(previously agreed in consultation with DESC)

Modelling basis broadly unchanged from spring 2004

i.e. Model smoothing (over 3 years) retained

Variable weekend weather sensitivity model

No warm-weather cut-offs applied to EUC models < 293 MWh pa (to help mitigate summer SF volatility)

12 month (Apr to Mar) analysis for most recent data set (2004/05)

This most recent data set (for 2004/05) contains 365 days.

In spring 2004, the most recent data set (2003/04) contained 366 days; note however that AQs are always based on 365 days.

In spring 2003, most recent data set (2002/03) covered 13 months to ensure data set contained an Easter holiday period.

Comprehensive 5 yearly CWV review undertaken

All CWV definitions revised

New seasonal normal weather basis adopted (i.e. SNCWVs)

New CWVs and SNCWVs applied to spring 2005 analysis

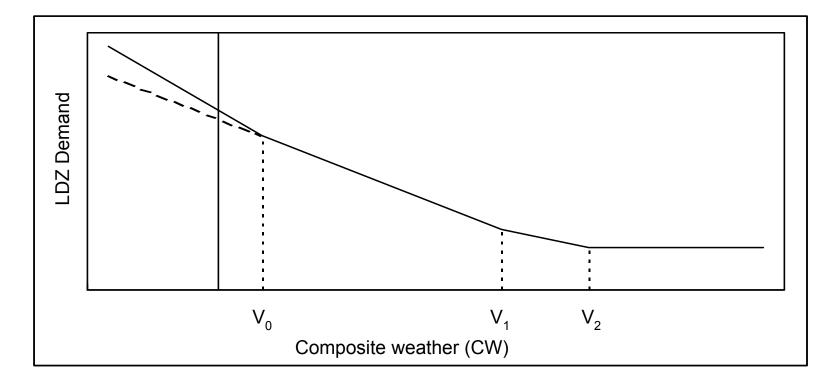
Model Smoothing

- For each EUC :
 - Models from last 3 years
 - Average ratio slope : constant
 - standardise models
 - take average of slopes
 - Average weekend / holiday effects

More robust models / profiles

Minimises year on year volatility

Less consequential commercial exposure to shippers



Background to CWV Review

- NC (H1.4.2) and now UNC, requires that every 5 years in consultation with DESC, composite weather variable (CWV) definitions for each LDZ are reviewed and where appropriate revised with effect from the start of a gas year.
- Last such review carried out in autumn 1999 and implemented on 1st October 2000. (Some CWVs revised since then because of weather station changes).
- Therefore comprehensive review of all LDZ CWVs carried out in autumn 2004 for implementation on 1st October 2005.
- Revised CWVs have been used in spring 2005 NDM analysis.
- Approach used in CWV review agreed at DESC meeting on 24 February 2004 (following extensive pre-analysis of proposed approach).
- New CWVs agreed by DESC on 17 December 2004

Definition of Composite Weather Variable (CWV)

CW(t)

=

$$I_1^*E(t) + (1-I_1)^*S(t) - I_2^*WC(t)$$

X serve

Characteristics of Previous CWVs

Good fit to LDZ demand over year as a whole.

However:

- Demand models display seasonal effects (overestimate in spring, underestimate in autumn).
- Seasonal Normal Effective Temperature (SNET) profiles cause seasonal CWV degree day profiles to have different shapes to seasonal demand profiles. (Note that the old SNET profiles were based on 71 years data from 01/10/1928 to 30/09/1999).
- Most previous CWVs were derived from LDZ maximum potential demand (MPD) data. MPD includes DM demand (which can vary for reasons other than weather) and interruption estimates.

Note: "previous CWVs" mean the CWVs that are currently "live"

X{>serve

Approach used for CWV review

- Derive most CWV parameters using aggregate NDM data only (8 gas years 1996/97 to 2003/04).
- Include MPD data (1981/82 to 1995/96) in derivation of cold weather parameters.
- Any days / years with incorrect demand data excluded / corrected.
- No change to underlying CWV formula
 - no system changes required to implement revised CWVs.
- Use different underlying seasonal profile revised ("pseudo") SNET
 i.e. a demand adjusted profile with improved shape.
- All LDZ CWVs reviewed (including those revised within last 5 years).
- Revised CWV for NO LDZ based on weather data from Albermarle Barracks (Newcastle Tyneside weather station closes after this gas year).
- Revised CWV for WN LDZ same as revised CWV for NW LDZ

Comparison of previous and revised CWVs

- Compare average seasonal bias of aggregate NDM demand models using the mean percentage residual error (MPRE): MPRE = 100*(avg. actual demand – avg. fitted demand) avg. actual demand
 (for quarters Mar-May, Jun-Aug, Sep-Nov and Dec-Feb)
- Compare average fit of aggregate NDM demand models using adjusted R-squared, root mean squared error (RMSE), and mean absolute percentage error (MAPE) statistics.
- Compare 1 in 20 peak CWVs (derived from 76 years of weather).
- Compare 1 in 20 peak aggregate NDM demand estimates (calculated from demand models and 1 in 20 peak CWVs).

CWV parameters (previous and revised) - 1

Parameters for previous and revised CWVs

LDZ	Weather Station	CWV			CWV P	aramete	ers		
LUZ	weather Station	Version	1	12	13	v0	v1	v2	q
SC	Bishopton	Previous	0.628	0.0086	0.27	2	9.7	15.5	0.80
30	Bisliopton	Revised	0.656	0.0125	0.22	3	13.3	16.0	0.64
NO	Tyneside	Previous	0.645	0.0096	0.61	2	12.2	16.2	0.64
	Albermarle	Revised	0.625	0.0116	0.50	0	12.6	15.7	0.55
NW	Hulme Library	Previous	0.646	0.0131	0.26	3	13.2	17.0	0.64
	Huime Library	Revised	0.661	0.0157	0.25	3	15.5	18.4	0.44
NE	Nottingham Watnall	Previous	0.642	0.0116	0.08	3	13.2	17.2	0.60
	Nottingham Wathan	Revised	0.703	0.0153	0.00	0	14.7	17.7	0.46
ЕМ	Nottingham Watnall	Previous	0.666	0.0098	0.05	0	12.1	16.4	0.62
	Nottingham Wathan	Revised	0.716	0.0134	0.00	0	14.6	17.3	0.43
WM	Birmingham Edgbaston	Previous	0.734	0.0097	0.24	0	13.1	16.9	0.52
VVIVI	Birningham Eugbaston	Revised	0.717	0.0113	0.25	1	14.7	18.2	0.34
WN	Hulme Library	Previous	0.646	0.0131	0.26	3	13.2	17.0	0.64
VVIN		Revised	0.661	0.0157	0.25	3	15.5	18.4	0.44

CWV parameters (previous and revised) - 2

Parameters for previous and revised CWVs (continued)

	We other Station	CWV			CWV P	aramete	ers		
LDZ	Weather Station	Version	l1	12	13	v0	v1	v2	q
ws	Cardiff	Previous	0.662	0.0113	0.38	1	14.4	17.0	0.80
vv3	Caluli	Revised	0.663	0.0133	0.18	2	15.7	19.3	0.39
EA	London Weather Centre	Previous	0.700	0.0096	0.03	1	15.4	18.9	0.41
LA	London Weather Centre	Revised	0.681	0.0125	0.00	0	15.9	19.5	0.37
NT	London Weather Centre	Previous	0.746	0.0078	0.10	2	15.3	18.9	0.38
	London Weather Centre	Revised	0.697	0.0125	0.05	3	16.0	20.1	0.30
SE	London Weather Centre	Previous	0.728	0.0077	0.15	2	14.6	18.4	0.44
9E	London weather Centre	Revised	0.692	0.0120	0.09	3	15.6	19.3	0.38
SO	Southampton Occonographic Contro	Previous	0.730	0.0120	0.34	2	14.4	17.7	0.44
30	Southampton Oceanographic Centre	Revised	0.710	0.0137	0.31	2	15.0	18.1	0.41
S/M	Filton	Previous	0.686	0.0096	0.04	2	13.9	17.2	0.46
SW	Filton	Revised	0.660	0.0094	0.05	3	14.5	17.8	0.36

Fit of demand to CWV (previous and revised) - 1

Statistics for Monday to Thursday non-holiday aggregate NDM demand models (1996/97 to 2003/04) (the aggregate NDM demand data for a few days in NO, WS, EA and NT LDZs has been excluded or corrected)

LDZ	CWV Version	1 in 20 Peak CWV CWV (76 years)	Mean Abs. % Error (MAPE)	Average Adjusted R-squared	Average RMSE (MWh)	Average RMSE change	Average change in est. 1 in 20 peak agg. NDM demand
SC	Previous	-3.70	4.17%	98.65%	6,968	-	-
	Revised	-4.72	3.60%	98.94%	6,164	-11.5%	-0.70%
NO	Previous	-5.55	5.18%	97.88%	6,044	-	-
	Revised	-8.24	3.87%	98.84%	4,472	-26.0%	-1.24%
NW	Previous	-3.38	4.16%	98.78%	10,922	-	-
	Revised	-4.04	3.51%	99.11%	9,301	-14.8%	-0.85%
NE	Previous	-4.94	5.03%	98.12%	6,639	-	-
	Revised	-5.90	4.44%	98.53%	5,887	-11.3%	1.07%
EM	Previous	-4.27	4.26%	98.74%	9,301	-	-
	Revised	-5.43	3.63%	99.11%	7,829	-15.8%	0.38%
WM	Previous Revised	-6.01 -6.60	4.01% 3.37%	98.86% 99.19%	8,234 6,954	- -15.5%	-0.47%
WN	Previous	-3.38	4.90%	98.04%	1,135	-	-
	Revised	-4.04	4.57%	98.27%	1,066	-6.1%	-0.85%

X serve

Fit of demand to CWV (previous and revised) - 2

Statistics for Monday to Thursday non-holiday aggregate NDM demand models (1996/97 to 2003/04) - continued (the aggregate NDM demand for a few days in NO, WS, EA and NT LDZs has been excluded or corrected)

LDZ	CWV Version	1 in 20 Peak CWV CWV (76 years)	Mean Abs. % Error (MAPE)	Average Adjusted R-squared	Average RMSE (MWh)	Average RMSE change	Average change in est. 1 in 20 peak agg. NDM demand
ws	Previous Revised	-4.05 -3.95	5.10% 3.91%	98.14% 98.88%	3,834 2,983	- -22.2%	-1.03%
EA	Previous	-2.69	4.51%	98.69%	7,497	-	-
	Revised	-3.06	3.73%	99.10%	6,211	-17.1%	0.94%
NT	Previous	-2.95	4.10%	98.89%	9,505	-	-
	Revised	-3.43	3.34%	99.23%	7,873	-17.2%	0.22%
SE	Previous Revised	-2.97 -3.52	4.49% 3.77%	98.81% 99.15%	9,632 8,105	- -15.9%	-0.06%
SO	Previous	-5.58	5.13%	98.41%	7,641	-	-
	Revised	-5.49	4.02%	99.02%	5,990	-21.6%	-0.57%
sw	Previous	-5.01	4.34%	98.77%	5,193	-	-
	Revised	-4.63	3.67%	99.14%	4,369	-15.9%	-0.84%

Seasonal bias of CWVs (previous and revised) - 1

	CWV	Average mean percentage residual error (MPRE)										
LDZ	Version	December to February		March 1	March to May		August	September to November				
		MPRE	MAPE	MPRE	MAPE	MPRE	MAPE	MPRE	MAPE			
SC	Previous	0.58%	2.65%	-3.12%	4.97%	2.37%	7.56%	1.06%	4.40%			
30	Revised	-0.14%	2.45%	-0.02%	4.02%	-0.43%	5.75%	0.37%	4.08%			
NO	Previous	1.43%	3.20%	-6.68%	7.80%	-0.50%	7.08%	3.92%	5.10%			
NU	Revised	0.03%	2.58%	-0.10%	5.06%	-0.84%	6.41%	0.32%	3.84%			
NW	Previous	0.61%	2.53%	-3.78%	5.69%	-0.35%	6.44%	2.54%	4.50%			
	Revised	0.13%	2.36%	0.09%	4.60%	-0.65%	5.51%	-0.05%	3.60%			
NE	Previous	0.90%	3.36%	-4.57%	6.76%	2.93%	8.15%	1.72%	4.93%			
	Revised	0.28%	3.24%	0.09%	5.39%	-0.13%	6.75%	-0.43%	4.61%			
EM	Previous	0.52%	2.53%	-4.32%	6.00%	0.06%	6.87%	2.96%	4.48%			
	Revised	0.03%	2.43%	0.23%	4.72%	-0.80%	5.91%	0.00%	3.75%			
WM	Previous	0.85%	2.63%	-3.80%	5.33%	-1.29%	5.74%	2.49%	4.36%			
V V I VI	Revised	0.00%	2.38%	0.30%	4.17%	-1.36%	4.88%	0.16%	3.66%			
WN	Previous	0.72%	3.64%	-3.12%	6.21%	0.13%	7.82%	1.66%	4.51%			
VVIN	Revised	0.28%	3.47%	0.44%	5.55%	-0.16%	7.67%	-0.74%	4.19%			

Seasonal bias for Monday to Thursday non-holiday aggregate NDM demand models (1996/97 to 2003/04) (the aggregate NDM demand data for a few days in NO, WS, EA and NT LDZs has been excluded or corrected)

Seasonal bias of CWVs (previous and revised) - 2

Seasonal bias for Monday to Thursday non-holiday aggregate NDM demand models (1996/97 to 2003/04) (the aggregate NDM demand data for a few days in NO, WS, EA and NT LDZs has been excluded or corrected)

	CWV			Average me	an percentage	residual error	(MPRE)		
LDZ	Version	December to February		March 1	March to May		June To August		November
		MPRE	MAPE	MPRE	MAPE	MPRE	MAPE	MPRE	MAPE
ws	Previous	0.93%	3.02%	-5.86%	7.02%	0.43%	7.19%	3.80%	5.76%
vv3	Revised	0.13%	2.80%	-0.08%	4.64%	-0.28%	5.54%	-0.02%	4.36%
EA	Previous	1.03%	3.27%	-5.10%	6.50%	0.30%	5.42%	2.84%	4.40%
LA	Revised	0.02%	2.98%	0.12%	4.51%	-0.14%	5.02%	-0.09%	3.81%
NT	Previous	0.71%	2.90%	-3.42%	5.31%	-1.80%	5.46%	2.54%	4.44%
	Revised	0.06%	2.46%	0.07%	4.21%	-0.07%	4.78%	-0.13%	3.47%
SE	Previous	0.70%	3.14%	-3.47%	5.78%	-2.14%	6.49%	2.68%	4.87%
SL	Revised	-0.02%	2.77%	0.28%	4.66%	-0.16%	5.73%	-0.17%	3.95%
SO	Previous	0.88%	3.38%	-5.64%	7.24%	-2.60%	5.82%	4.56%	5.77%
30	Revised	0.16%	3.11%	-0.03%	5.34%	-0.89%	4.98%	0.04%	3.96%
SW	Previous	0.78%	2.78%	-4.27%	6.16%	0.26%	5.37%	2.67%	4.78%
344	Revised	-0.07%	2.57%	0.37%	5.06%	-0.46%	4.58%	-0.09%	3.83%

The revised CWVs:

display significantly less seasonal bias on average in all LDZs

and

produce better fit to aggregate NDM demand over year as a whole than the previous CWV for all LDZs

New Seasonal Normal Weather Basis

- Under the terms of Section H (paragraphs. H1.4 & H1.5) of the Network Code (and now the Uniform Network Code) a new basis for seasonal normal weather conditions is required to take effect on 1st October 2005.
- The new basis developed and agreed in consultation with DESC, is the 17 years from October 1987 to September 2004.
- The new seasonal normal basis and the ensuing values of SNCWVs have been used in the spring 2005 NDM analysis.

New Seasonal Normal Basis - Summary of Analysis

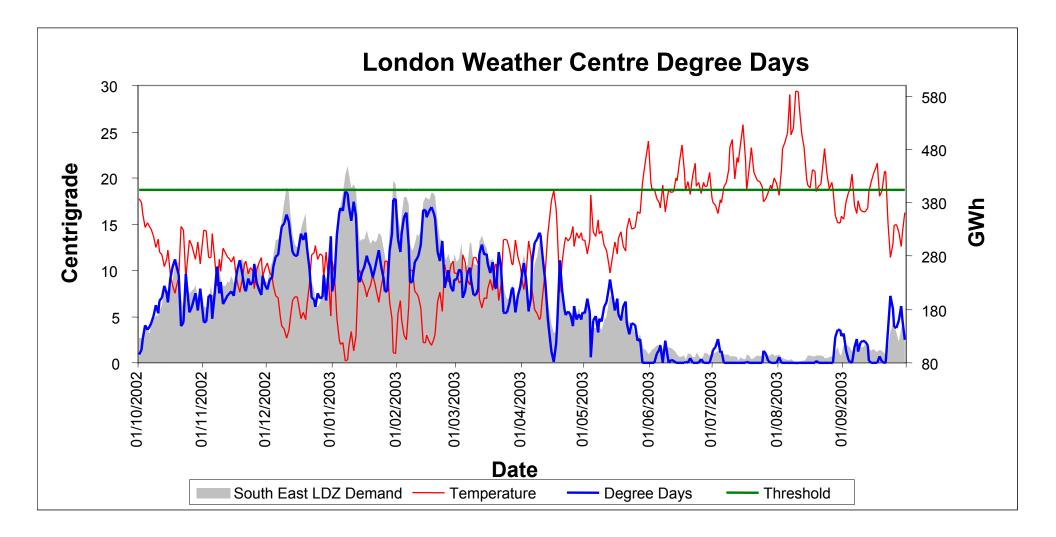
The analysis undertaken examined changes in annual degree days.

Three options were evaluated

- Trend line
- Step change to a new lower level
- No warming before the change with a constant rate of warming after the change (i.e. trend line after change)

The year of introduction of the change was varied to investigate every usable combination of periods

Annual Degree Days


 Annual Degree Days are calculated for gas supply years (October to September) and are the sum of the daily degree days for the year.

Daily Degree Days = Maximum(Threshold-Daily Temperature,0)

- The threshold is set to the average warm weather cut off parameter in the CWV formulas using the weather station.
- This ensures that the analysis reflects changes in the weather that affects gas demand and ignores summer warming.

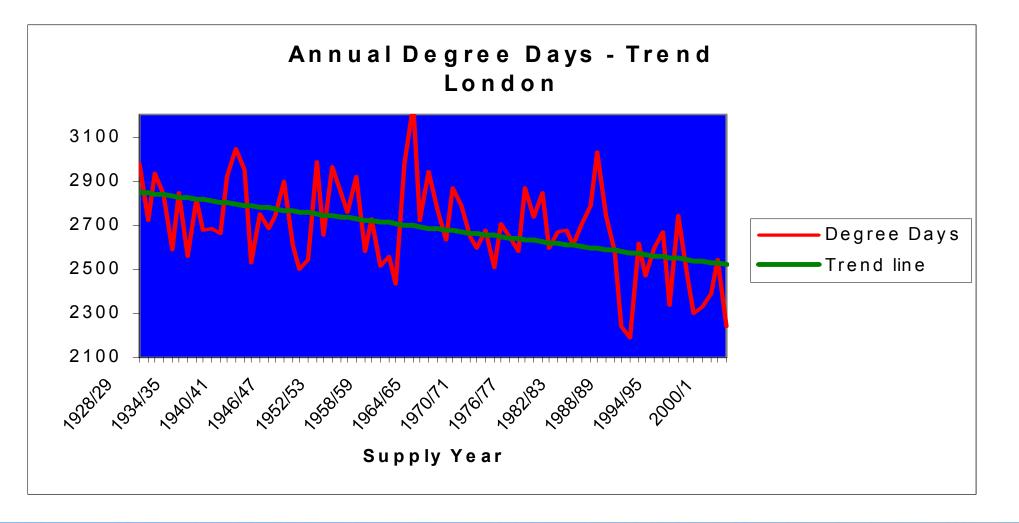
Annual Profiles of Degree Days & Gas Demand

X()serve

Basis used for Evaluation of Options

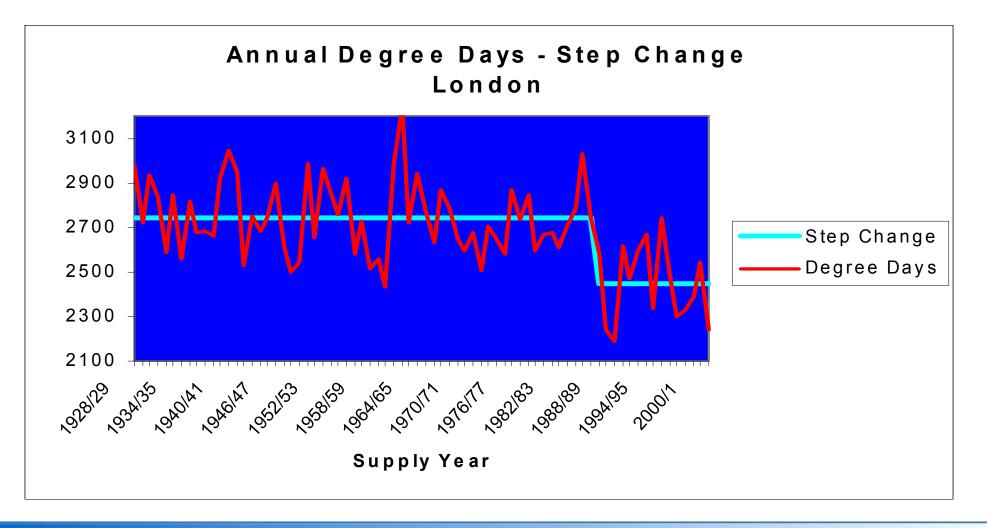
A root mean squared error was calculated for each of the options evaluated for each point of change.

This measures the deviation from the mean or trend line value. The best choice is then the option with the lowest RMSE.

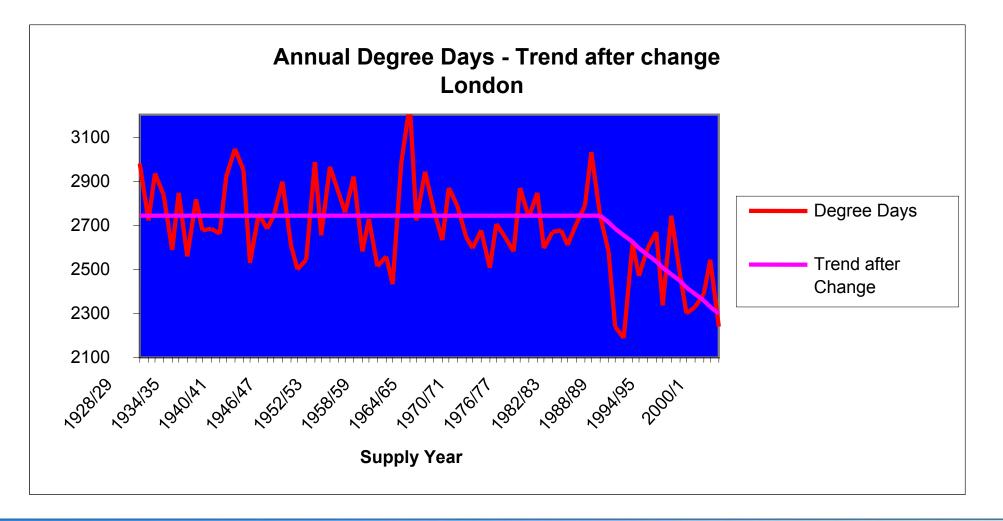

RMSE = $\sqrt{\sum (\text{Annual degree days} - \text{mean or trend line value})^2}$

Number of gas supply years

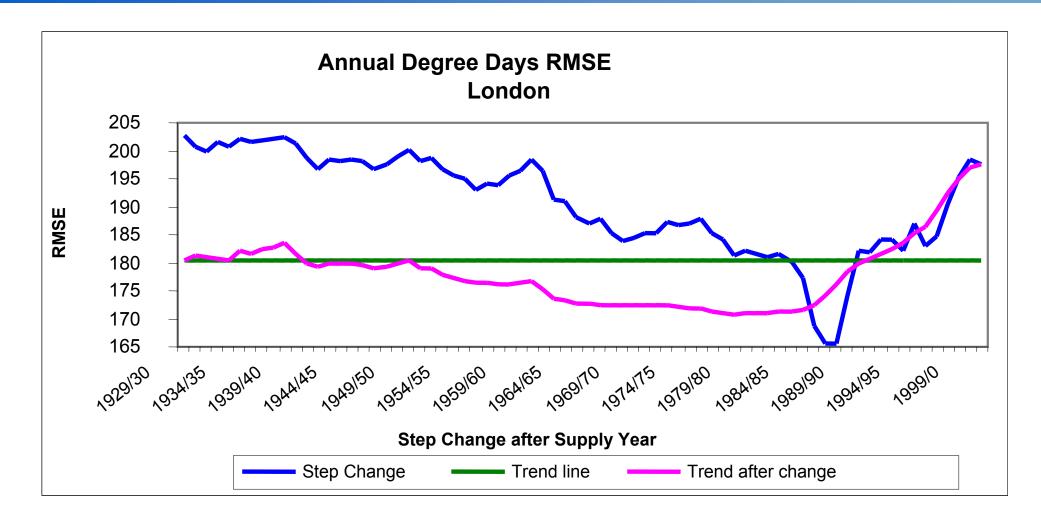
In every case assessed the RMSE was calculated for a change at the end of each gas supply year.



Example - Trend Line (London Weather Centre)

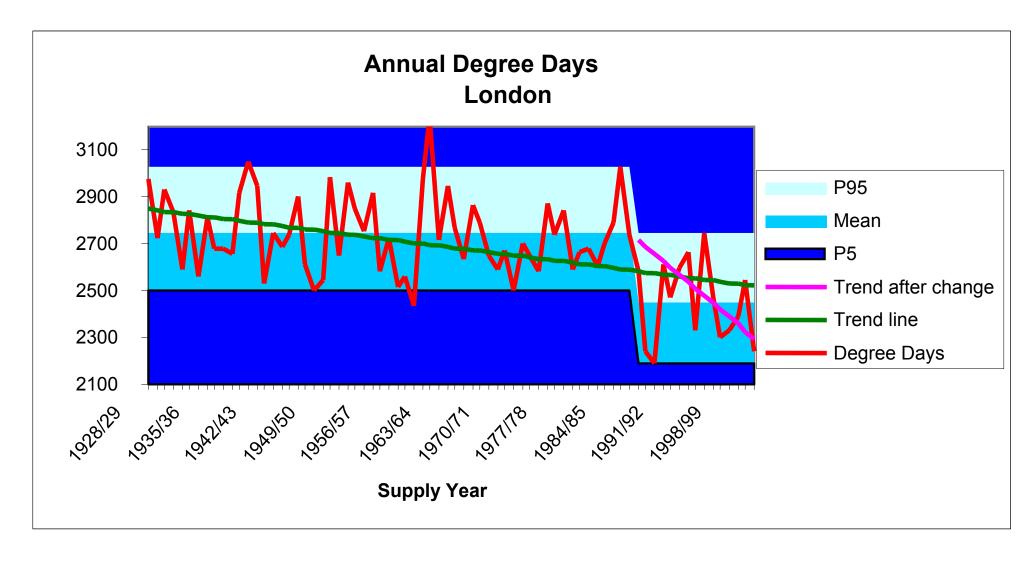

x<>serve

Example - Step Change (London Weather Centre)

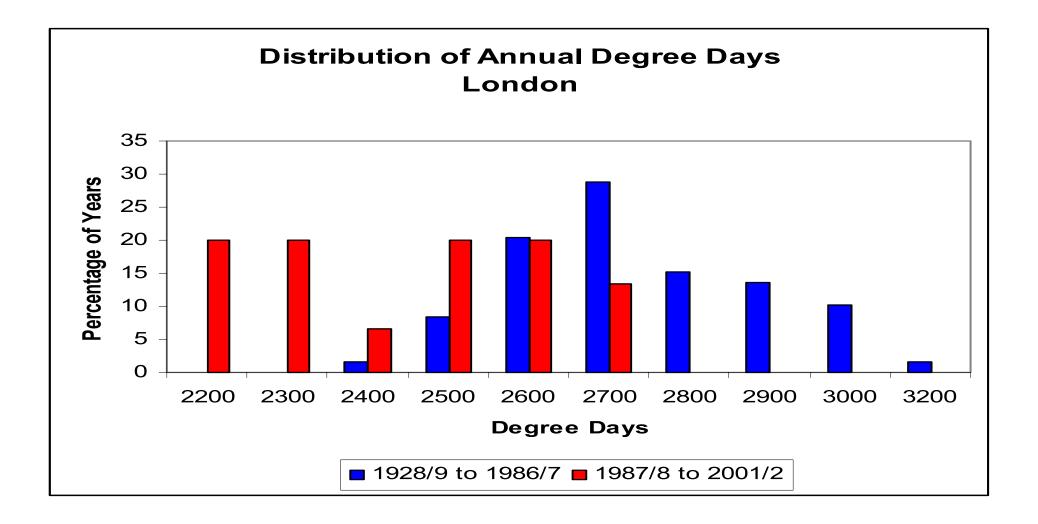

x<>serve

Example - Trend after Change (London Weather Centre)

X{>serve


Annual Degree Day RMSE - London Weather Centre

The RMSE is lowest for a step change in the late 1980s.


XX>serve

Annual Degree Days- London Weather Centre Step Change between 1986/7 and 1987/8

X()serve

Annual Degree Days – London Distribution before and after step change

X()serve

New Seasonal Normal Basis

The proposed new basis agreed in consultation with DESC, is the 17 years from October 1987 to September 2004

The new seasonal normal basis:

satisfies Network Code (and now, UNC) obligations for review and revision.

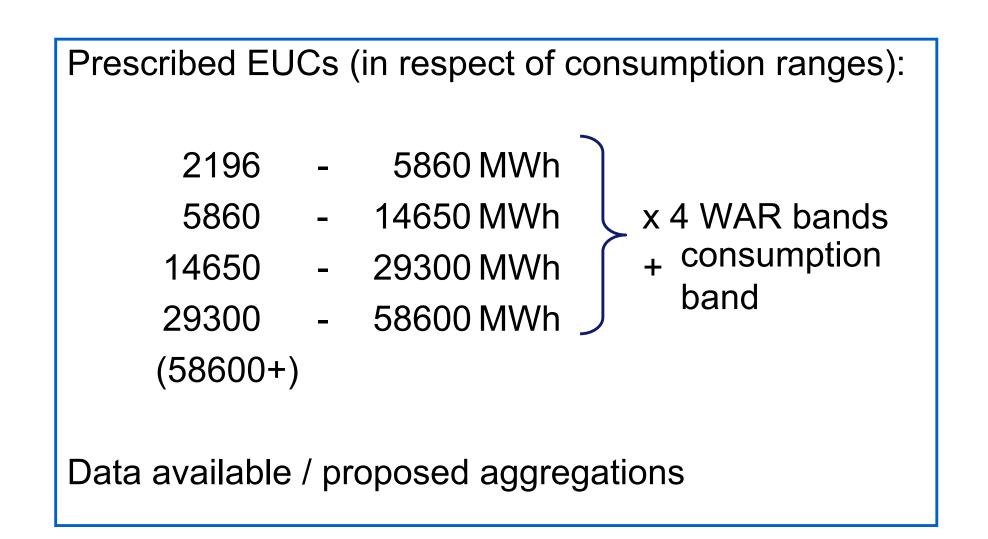
is appropriate to its intended use in gas demand modelling (with a view therefore to addressing seasonal modelling deficiencies).

provides more appropriate weather correction of gas demand to deliver a more realistic basis for assessing AQs for Network Code (and now UNC) processes.

The new basis is not intended to second guess climatologists nor suggest any novel insights about climatological phenomena.

Spring 2005 – ongoing analysis

Consider most appropriate data sets and aggregations to apply to the most recently available data - i.e. 2004/05


Small NDM (up to 2196 MWh pa) and large NDM (> 2196 MWh pa) considered separately

Previous years' data sets retain the levels of aggregation applied in those years - i.e. 2002/03 & 2003/04

Three years of data go into producing smoothed models

Large NDM

x<>serve

Data Available: Datalogged Supply Points

No of act	ive dataloggers as at 01/	/04/2004	Total 17940	Small NDM 10814
	Data validation		17540	10014
	Missing Days			
	Consecutive Zer	ros		
	Spike Detection			
No. of val	idated dataloggers :	16290	10093	
No. of sup	oply points after validatio	n :		
		Large NDM	5493	(6014)
		Small NDM Total	5938 11431 ((5630) (11644) 2004 analysis)

New AQ Basis: Effect on Data Aggregations

• On the whole AQs decrease:

The reduction is related to weather sensitivity - i.e. less reduction at higher consumption ranges and/or for low weather sensitive EUCs

The broad effect on NDM sample sizes is:

Increased validated sample numbers for small NDM (<2196 MWh pa) Reduced validated sample numbers for large NDM (>2196 MWh pa)

- Data aggregations for large NDM consumption band analyses are nevertheless the same or better
- Each consumption band data set divides into 4 sub-sets for WAR band analyses
- Higher data aggregations are necessary for WAR band analyses in each large NDM consumption band

Large NDM : Data Aggregations

	Cons. Band Analysis (last year)	WAR Band Analysis (last year)
Band 05	By LDZ	By 5 LDZ Groups
(2196 - 5860 MWh pa)	(By LDZ)	(By LDZ)
Band 06	By LDZ	By 3 LDZ Groups
(5860 - 14650 MWh pa)	(By LDZ)	(By 4 LDZ Groups)
Band 07	By 5 LDZ Groups	National
(14650 - 29300 MWh pa)	(By 5 LDZ Groups)	(By 2 LDZ Groups)
Band 08	By 4 LDZ Groups	National
(29300 - 58600 MWh pa)	(By 3 LDZ Groups)	(National)
Band 09 (> 58600 MWh pa)	National (National)	

Large NDM Supply Points (>2196 MWh pa) Consumption Band Analyses – Disposition of Validated Sample

LDZ	2196-5860 MWh pa	5860-14650 MWh pa	14650-29300 MWh pa	29300-58600 MWh pa	>58600 MWh pa
SC	367	112	32	15	10
NO	200	77	21	18	14
NW & WN	432	181	47	29	31
NE	236	97	32	22	9
EM	286	123	56	34	24
WM	354	162	60	40	32
EA	232	102	28	12	2
NT	417	144	27	8	7
SE	314	80	18	13	8
WS	115	54	23	13	9
SO	244	86	36	10	6
SW	202	81	31	10	8
Total	3399	1299	411	224	160

x<>serve

Large NDM Supply Points (>2196 MWh pa)

Sample v- Population

Consumption Range	Validated Sample	Firm SP Population (1)
2196-5860 MWh pa	3399	7750
5860-14650 MWh pa	1299	2230
14650-29300 MWh pa	411	670
29300-58600 MWh pa	224	270
>58600 MWh pa	160 <mark>(2)</mark>	180 <mark>(3)</mark>

Notes: (1) Approx. figures for all Firm supply points as at mid-April 2005. Population figures are necessarily on <u>old seasonal normal basis</u>

- (2) Sample data set includes all firm supply points that pass data validation because there are too few NDM supply points with AQ>58,600 MWh pa. Supply points with AQ>58,600 MWh pa should normally be DM.
- (3) Number of NDM supply points with AQ>58,600 MWh pa as at mid-April 2005 was 13 (~0.17% of aggregate NDM AQ).

x

NDM Population Disposition

Concumption Dance	% of Total NDM		
Consumption Range	AQ Basis	Number Basis	
0 - 73.2 MWh pa	72%	98%	
0 - 2196 MWh pa (small NDM)	89%	99.9%	
> 2196 MWh pa (large NDM)	11%	0.1%	

On an AQ basis:

Small NDM is by far the main component of the overall NDM sector The range 0-73.2 MWh pa constitutes more than 2/3 of overall NDM Large NDM is very much a minority component of overall NDM

(Note: these figures are on the currently applicable seasonal normal basis)

Indicative Load Factors & Load Factors

- Load Factor (LF):
 - LF = average daily demand / 1 in 20 peak demand

= (AQ/365) / 1 in 20 peak demand

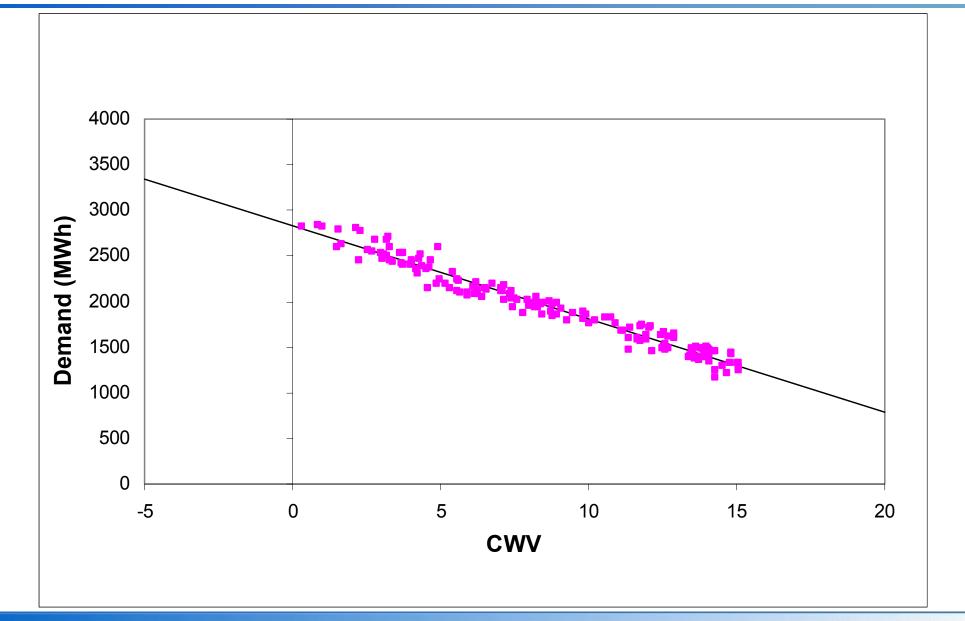
Indicative Load Factor (ILF):

ILF = (AQ/365) / model demand corresponding to 1 in 20 CWV

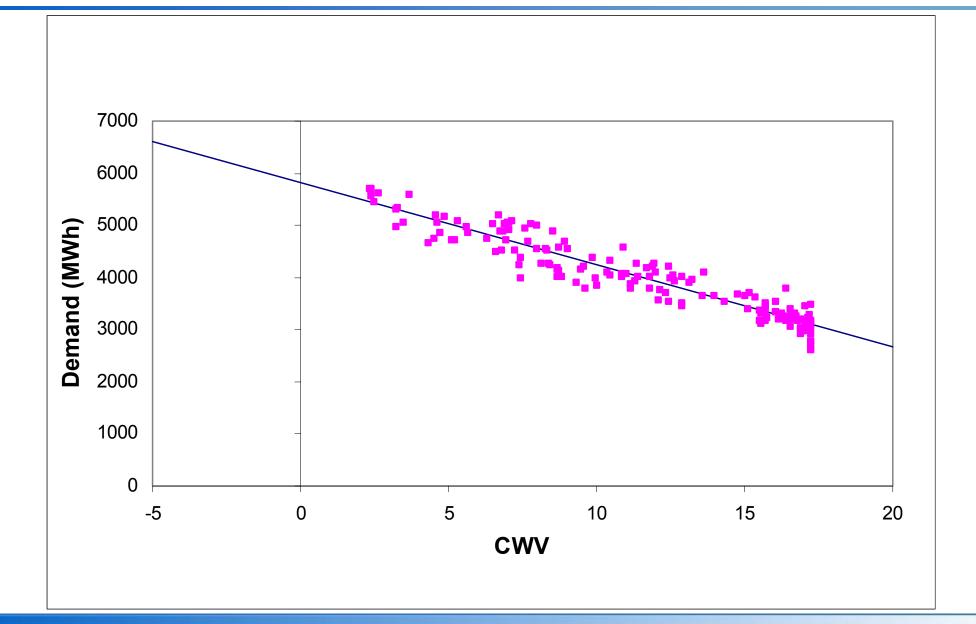
- ILFs are only used to compare prospective demand models as an aid to making decisions on model choice
- ILFs are not the same as proper LFs and their values are not an indicator of the values of proper LFs
- ILFs are not used for determining NDM supply point capacities.

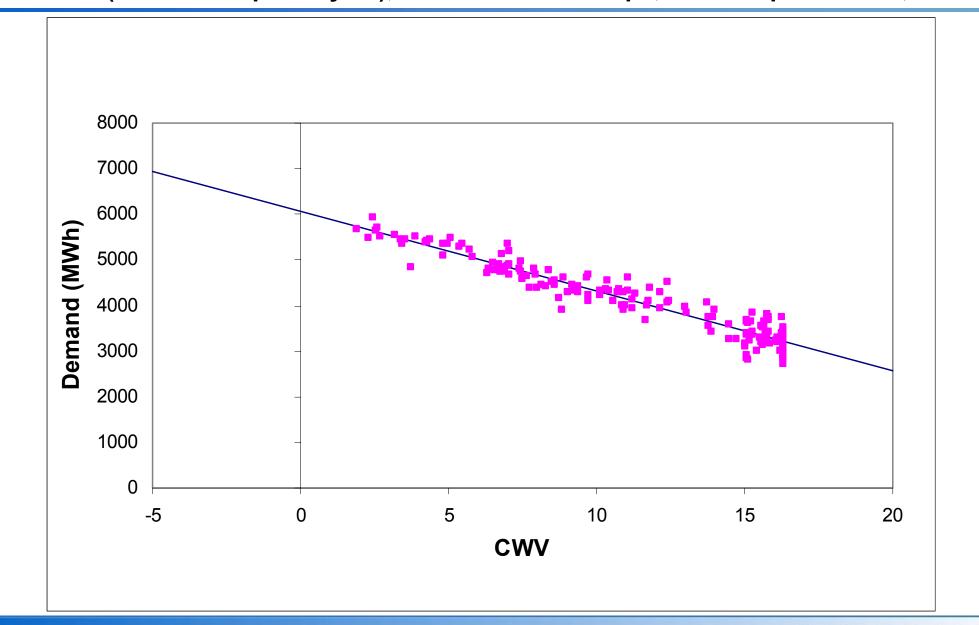
Large NDM Supply Points (>2196 MWh pa) Consumption Band Analyses – Indicative Load Factors

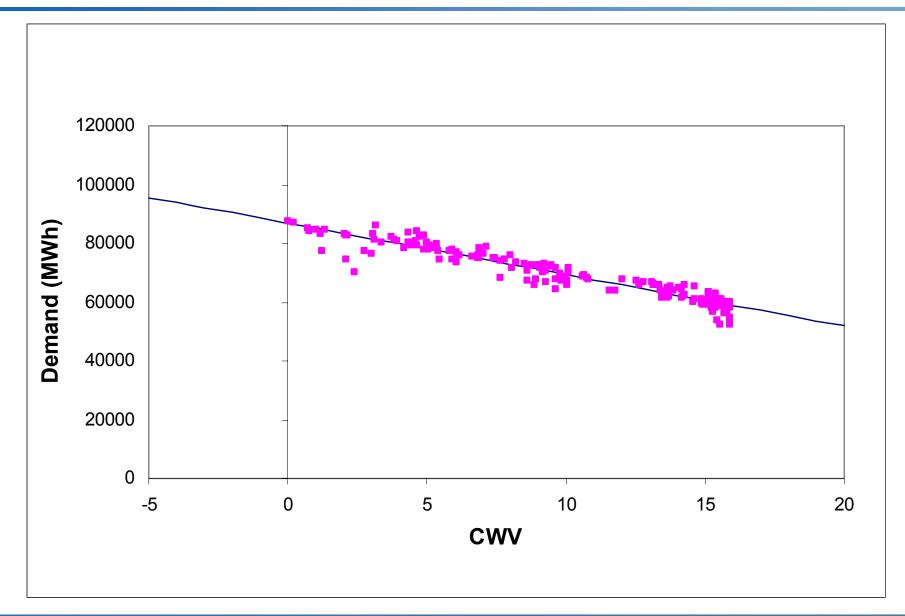
LDZ	2196-5860	5860-14650	14650-29300	29300-58600	>58600
	MWh pa	MWh pa	MWh pa	MWh pa	MWh pa
SC	43% 98% (367)	48% 99% (112)	53% 97% (32)	66% 94% (62)	68% 93%
NO	37% 97% (200)	42% 97% (77)	50% 98% (68)		(160)
NW/WN	41% 98% (432)	48% 98% (181)			
NE	37% 98% (236)	44% 97% (97)	51% 98% (148)	61% 97% (96)	
EM	40% 98% (286)	45% 98% (123)			
WM	35% 98% (354)	45% 98% (162)]
EA	38% 98% (232)	44% 98% (102)	53% 97% (73)	58% 92% (33)	
NT	41% 98% (417)	47% 99% (144)			
SE	38% 98% (314)	46% 98% (80)]
WS	39% 98% (115)	42% 98% (54)	44% 98% (90)	56% 92% (33)	
SO	36% 99% (244)	39% 98% (86)			
SW	39% 98% (202)	47% 97% (81)			J [


Indicative Load Factor

R² Multiple Correlation Coefficient


(Sample Size)


Demand Against CWV, Monday to Thursday, Non-Holiday SC LDZ (5 LDZ Group Analysis), 14650-29300 MWh pa, Consumption Band, SC CWV


Demand Against CWV, Monday to Thursday, Non-Holiday EA/NT/SE (4 LDZ Group Analysis), 29300-58600 MWh pa, Consumption Band, NT CWV

Demand Against CWV, Monday to Thursday, Non-Holiday WS/SO/SW (4 LDZ Group Analysis), 29300-58600 MWh pa, Consumption Band, SO CWV

Demand Against CWV, Monday to Thursday, Non-Holiday National Aggregation, >58600 MWh pa, Consumption Band, WM CWV

X{>serve

Large NDM Supply Points (>2196 MWh pa) WAR Band Analyses – Disposition of Validated Sample

LDZ	2196-5860 MWh pa	5860-14650 MWh pa	14650-29300 MWh pa	29300-58600 MWh pa	>58600 MWh pa
SC	367	112	32	15	10
NO	200	77	21	18	14
NW & WN	432	181	47	29	31
NE	236	97	32	22	9
EM	286	123	56	34	24
WM	354	162	60	40	32
EA	232	102	28	12	2
NT	417	144	27	8	7
SE	314	80	18	13	8
WS	115	54	23	13	9
SO	244	86	36	10	6
SW	202	81	31	10	8
Total	3399	1299	411	224	160

Large NDM Supply Points (>2196 MWh pa) WAR Band Analyses – Disposition of Validated Sample

Consumption Band : 2196 - 5860 MWh pa

LDZ	0.00 - 0.39	0.39 - 0.46	0.46 - 0.54	0.54 - 1.00	Total
SC	75	127	118	47	367
NO	39	56	66	39	200
NW/W	N 126	127	101	78	432
NE	52	60	58	66	236
EM	74	75	78	59	286
WM	60	101	88	105	354
WS	23	27	40	25	115
EA	38	53	64	77	232
NT	44	128	161	84	417
SE	36	82	108	88	314
SO	35	66	78	65	244
SW	57	52	44	49	202
Total	659	954	1004	782	3399

Large NDM Supply Points (>2196 MWh pa) 5 LDZ Group WAR Band Analyses – Disposition of Validated Sample

Consumption Band : 2196 - 5860 MWh pa						
LDZ Group	0.00 - 0.39	0.39 - 0.46	0.46 - 0.54	0.54 - 1.00		
SC	75	127	118	47		
NO/NW/WN	165	183	167	117		
NE/EM/WM	186	236	224	230		
EA/NT/SE	118	263	333	249		
WS/SO/SW	115	145	162	139		
TOTAL	659	954	1004	782		

Large NDM Supply Points (>2196 MWh pa) 5 LDZ Group WAR Band Analysis – Indicative Load Factors

Consumption Band : 2196 - 5860 MWh pa

LDZ	0.00 - 0.39	0.39 - 0.46	0.46 - 0.54	0.54 - 1.00
SC	66% 96% (75)	50% 98% (127)	36% 98% (118)	28% 97% (47)
NO/NW/WN	63% 98% (165)	49% 98% (183)	34% 97% (167)	24% 96% (117)
NE/EM/WM	64% 99% (186)	47% 98% (236)	35% 98% (224)	24% 97% (230)
EA/NT/SE	68% 96% (118)	51% 98% (263)	40% 97% (333)	27% 98% (249)
WS/SO./SW	67% 95% (115)	47% 98% (145)	36% 98% (162)	24% 98% (139)

Indicative Load Factor

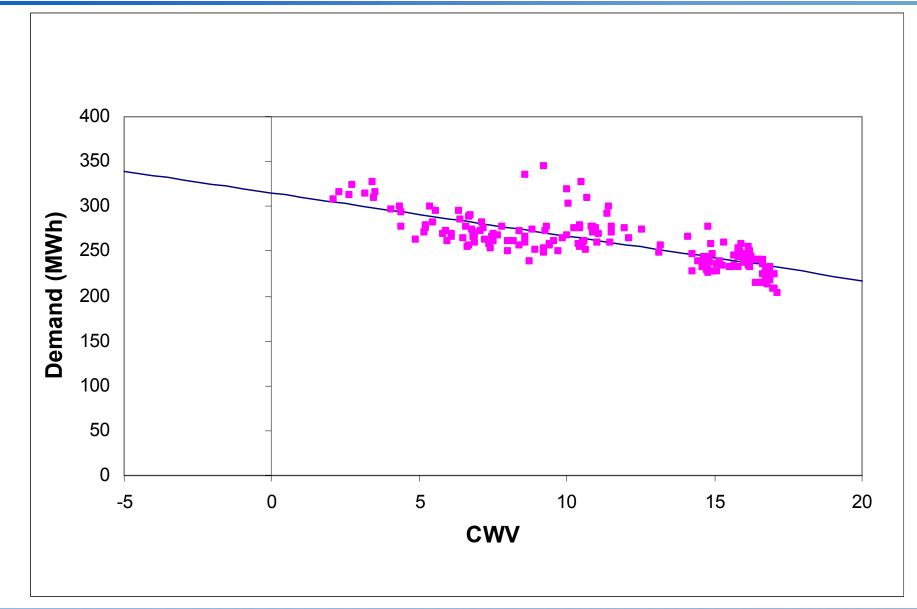
R² Multiple Correlation Coefficient

(Sample Size)

Large NDM Supply Points (>2196 MWh pa) WAR Band Analyses – Indicative Load Factors

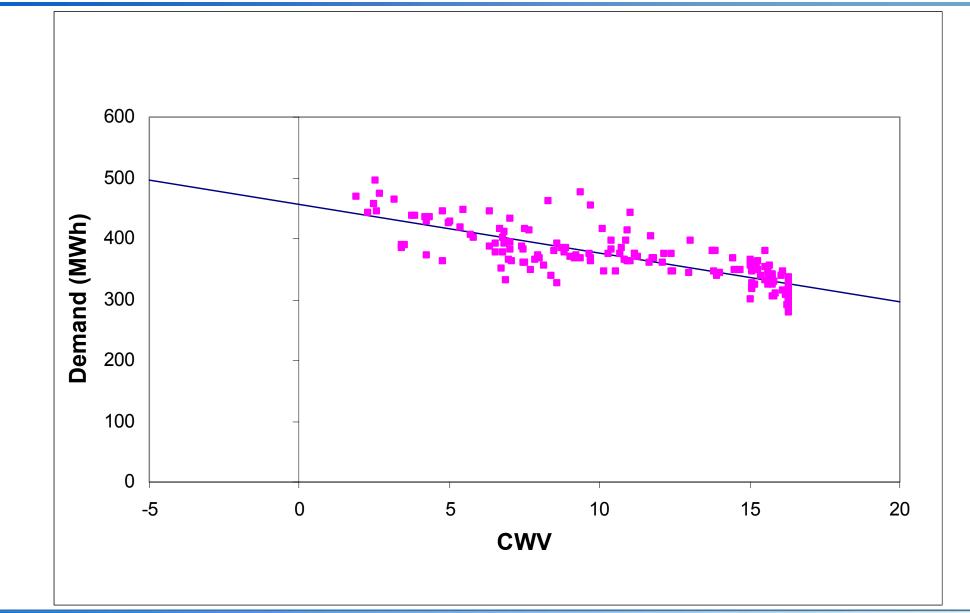
Consumption Band : 2196 - 5860 MWh pa

LDZ	0.00 - 0.39	0.39 - 0.46	0.46 - 0.54	0.54 - 1.00
SC	66% 96% (75)	50% 98% (127)	36% 98% (118)	28% 97% (47)
NO	62% 96% (39)	47% 97% (56)	32% 97% (66)	24% 95% (39)
NW/WN	64% 97% (126)	50% 98% (127)	35% 97% (101)	25% 96% (78)
NE	64% 97% (52)	47% 97% (60)	36% 98% (58)	25% 96% (66)
EM	63% 98% (74)	48% 98% (75)	36% 98% (78)	25% 97% (59)
WM	67% 97% (60)	46% 98% (101)	34% 98% (88)	23% 97% (105)
EA	64% 96% (38)	52% 96% (53)	38% 98% (64)	27% 98% (77)
NT	74% 90% (44)	50% 97% (128)	41% 97% (161)	28% 98% (84)
SE	67% 95% (36)	50% 97% (82)	38% 97% (108)	26% 98% (88)
WS	66% 92% (23)	47% 98% (27)	36% 98% (40)	25% 95% (25)
SO	66% 86% (35)	47% 98% (66)	35% 98% (78)	24% 98% (65)
SW	67% 96% (57)	47% 95% (52)	36% 98% (44)	25% 97% (49)

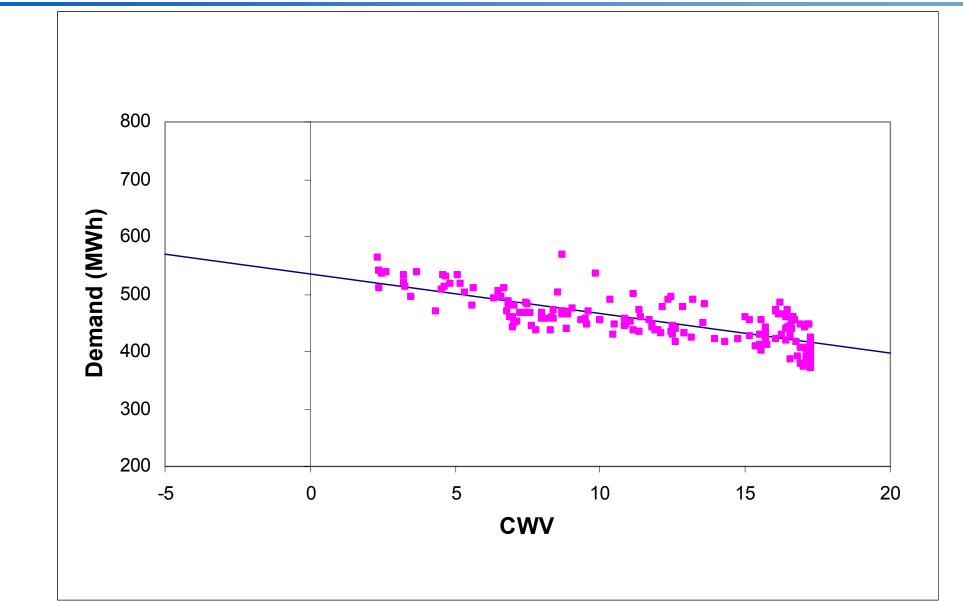

Indicative Load Factor

R² Multiple Correlation Coefficient

(Sample Size)



Demand Against CWV, Monday to Thursday, Non-Holiday Individual LDZ Analysis, WS LDZ, 2196-5860 MWh pa, WAR Band 1


X{>serve

Demand Against CWV, Monday to Thursday, Non-Holiday Individual LDZ Analysis, SO LDZ, 2196-5860 MWh pa, WAR Band 1

X
Serve

Demand Against CWV, Monday to Thursday, Non-Holiday Individual LDZ Analysis, NT LDZ, 2196-5860 MWh pa, WAR Band 1

X serv

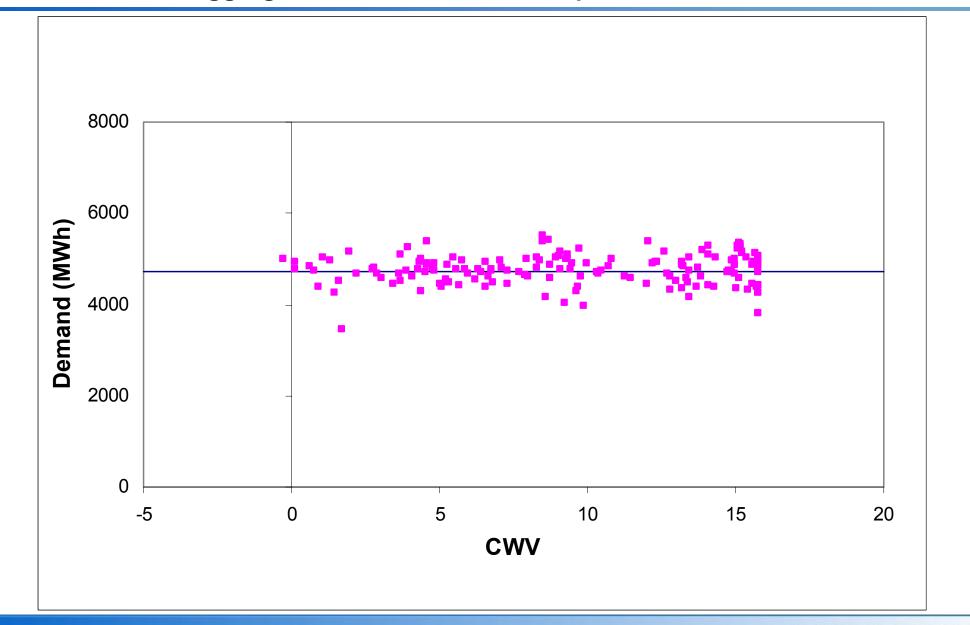
Large NDM Supply Points (>2196 MWh pa) WAR Band Analyses – Disposition of Validated Sample

	Consumption Band : 5860 - 14650 MWh pa				
LDZ Group	0.00 - 0.34	0.34 - 0.42	0.42 - 0.51	0.51 - 1.00	
SC/NO/NW/WN	77	129	107	57	
NE/EM/WM	88	127	89	78	
EA/NT/SE/ WS/SO/S	SW 78	146	191	132	
TOTAL	243	402	387	267	
	Cons	sumption Band : 1465	50 - 29300 MWh pa		
LDZ Group	0.00 - 0.34	0.34 - 0.39	0.39 - 0.47	0.47 - 1.00	
All LDZs	99	114	111	87	
	Cons	sumption Band : 2930	0 - 58600 MWh pa		
LDZ Group	0.00 - 0.31	0.31 - 0.35	0.35 - 0.43	0.43 - 1.00	
All LDZs	38	79	62	45	

X serve

Large NDM Supply Points (>2196 MWh pa) WAR Band Analyses – Indicative Load Factors

Consumption Band : 5860 - 14650 MWh pa


LDZ Group	0.00 - 0.34	0.34 - 0.42	0.42 - 0.51	0.51 - 1.00
SC/NO/NW/WN	78% 96% (77)	56% 98% (129)	42% 98% (107)	25% 96% (57)
NE/EM/WM	79% 97% (88)	54% 98% (127)	39% 99% (89)	27% 97% (78)
EA/NT/SE/WS/SO/SW	84% 97% (78)	57% 98% (146)	43% 98% (191)	29% 98% (132)

Consumption Band : 14650 - 29300 MWh pa									
LDZ Group	0.00 - 0.34	0.34 - 0.39	0.39 - 0.47	0.47 - 1.00					
All LDZs	77% 98% (99)	62% 98% (114)	45% 98% (111)	31% 97% (87)					
	Consum	ption Band : 29300	- 58600 MWh pa						
LDZ Group	0.00 - 0.31	0.31 - 0.35	0.35 - 0.43	0.43 - 1.00					
All LDZs	93% 66% (38)	81% 92% (79)	58% 96% (62)	37% 96% (45)					

Indicative Load FactorR² Multiple Correlation Coefficient(Sample Size)

Demand Against CWV, Monday to Thursday, Non-Holiday National Aggregation, 29300-58600 MWh pa, WAR Band 1, EM CWV

Large NDM : Proposed Data Aggregations

Cons. Band Analysis (last year)

WAR Band Analysis (last year)

Band 05 (2196 - 5860 MWh pa)

Band 06 (5860 - 14650 MWh pa) By LDZ (By LDZ)

By LDZ

(By LDZ)

By 5 LDZ Groups (By LDZ)

By 3 LDZ Groups (By 4 LDZ Groups)

By 5 LDZ Groups Band 07 (14650 - 29300 MWh pa) (By 5 LDZ Groups)

Band 08 (29300 - 58600 MWh pa) (By 3 LDZ Groups)

By 4 LDZ Groups

Band 09 (> 58600 MWh pa) National (National)

National (By 2 LDZ Groups)

National (National)

Large NDM EUC Smoothed Models (provisional)

Number "straight"	169	(179)
Number with cut-off	38	(43)
Number with summer reductions	61	(61)
Number with no slope	13	(0)
Number with cut-offs and reductions	8	(10)

NB: last year's figures in brackets

Small NDM

(EUC consumption ranges not prescribed in Code)

Data available / proposed data sets

Results so far / proposed EUCs / proposed aggregations

Issues raised

Data Available: Small NDM Data Recorders

Active data recorders at 17/03/2004	3938
Sample site terminations over previous 12 months Sample site replacements over previous 12 months New installations over previous 12 months	199 212 120
Active data recorders at 17/03/2005	4071
Data recorders with data successfully gathered	3960
Of these: data recorders active at 17/03/04	3679
Total no. of validated data recorders Total no. of validated supply points (3270 in spring 2004)	3478 3456

[of these 3456 supply points, 2566 are domestic and in the 0-73.2 MWh pa range and 711 are in the 73.2-293 MWh pa range]

X serve

Small NDM Data Recorders

Domestic supply points <73.2 MWh pa

LDZ	No. active at 17/03/2005	Of these, no. collected	Of these, no. active at 17/03/2004	Of these, no. passing validation	% passing validation
SC	242	239	232	230	99.14%
NO	245	238	228	212	92.98%
NW/WN	242	228	210	198	94.29%
NE	267	262	238	231	97.06%
EM	249	244	222	215	96.85%
WM	248	240	231	222	96.10%
WS	244	236	219	207	94.52%
EA	243	235	222	215	96.85%
NT	251	245	215	198	92.09%
SE	243	241	228	218	95.61%
SO	244	241	213	205	96.24%
SW	248	244	223	215	96.41%
TOTAL	2966	2893	2681	2566	95.71%

Active dataloggers at start of analysis period : 10814 (at 01/04/2004)

Total number of validated dataloggers : 10093

Total number of validated supply points :5938(Note: 5443 of this set of 5938 are in 293 – 2196 MWh pa range)

2005 NDM Analysis – Overall Sample Disposition

Analysis	No. of <u>meter points</u> in active sample			No. of <u>sup</u>	No. of supply points <u>used</u> for analysis		
Year	Datalogger based	Data recorder based	All	Datalogger based	Data recorder based	All	All
2005	17940	4071	22011	11431	3456	14887	14708
2004	18494	3938	22432	11644	3270	14914	14739
Change	-554	+133	-421	-213	+186	-27	-31

Note: datalogger based data and non-domestic data recorder based data is not used below 73.2 MWh pa and data recorder based data is not used above 293 MWh pa

X Serve

2005 NDM Analysis – Overall Sample Disposition

Band	2005	2004	Change
0-73.2 MWh pa	2566	2400	+166
73.2-293 MWh pa	1206	1119	+87
293-2196 MWh pa	5443	5206	+237
All Small NDM	9215	8725	+490
> 2196 MWh pa All Large NDM	5493	6014	-521
Overall	14708	14739	-31

Note: These are validated supply point numbers used in the analysis

X Ser

Small NDM

EUCs	Issues
0 - 73.2	constitution of data sets
73.2 - 293	split at 145 ?
293 - 732	combine data for modelling ?
732 - 2196	split at 1465 ?

Small NDM Proposed Data Sets

0 – 73.2 MWh pa	12 months Recorder Data	<u>2566 Supply Points</u> (domestic sub-set) or 2614 Supply Points (inc. some non-Domestic)
73.2 – 293 MWh pa	12 months Combined Data	1206 Supply Points
293 – 2196 MWh pa	12 months Logger Data	5443 Supply Points

Representing 0 - 73.2 MWh pa

- Non-domestic component not precisely known: pre-competition figures (~1992) indicate around 2%
- Market sector flag (MSF) instituted some years ago to enable industry to meet supplier licence condition of domestic supplier of last resort
- No MSF information available for ~12 million meter points (May 2005)
- ~9 million meter points classified to date ~1.7% of total is non-domestic (one year ago ~7.5M meter points had been classified and ~1.7% of total were non-domestic)
- Issues of accuracy and verification with MSF
- Be that as it may, separate treatment of domestic/non-domestic is not feasible: MSF is not universally available
- Load factor differences across LDZs more significant than differences across consumption sub-bands (3 percentage points or less across sub-bands in 0-73.2 MWh pa range; 9 percentage points or more across LDZs from north to south)

Representing 0 - 73.2 MWh pa – SF effects

- Weekend (Fri/Sat/Sun) SF patterns indicate under-estimation of demand
- Inclusion of a proportion of non-domestic sample points leads to lower positive or even negative weekend factors in the resulting "01B" model
- Will lead to greater weekend positive SF offsets

Small NDM Indicative Load Factors

0 – 73.2 MWh pa Domestic Sites Only/(inc. Some non-Domestic Sites)

LDZ	Don	Domestic Sites Only			Including Some Non-Domestic Sites				
SC	40 %	98%	(230)	40 %	98 %	(234)			
NO	36 %	98 %	(212)	36 %	98 %	(216)			
NW/WN	39 %	98 %	(198)	39 %	98 %	(202)			
NE	38 %	98 %	(231)	38 %	98 %	(235)			
EM	38 %	99 %	(215)	38 %	99 %	(219)			
WM	35 %	99 %	(222)	34 %	99 %	(226)			
WS	35 %	98 %	(207)	35 %	98 %	(211)			
EA	36 %	98 %	(215)	36 %	98 %	(219)			
NT	34 %	99 %	(198)	34 %	99 %	(202)			
SE	33 %	99 %	(218)	33 %	99 %	(222)			
SO	31 %	99 %	(205)	30 %	99 %	(209)			
SW	33 %	98 %	(215)	33 %	99 %	(219)			

Indicative Load Factor

R² Multiple Correlation Coefficient (Sample Size)

Smoothed model based on domestic only data sets

Smoothed model based on data sets
including some non-domestic

LDZ	C1 (Constant)	C2 (Slope)	C3 (Fri)	C4 (Sat)	C5 (Sun)	LDZ	C1 (Constant)	C2 (Slope)	C3 (Fri)	C4 (Sat)	C5 (Sun)
SC	27200	-1596	132	421	371	SC	28547	-1670	159	378	276
NO	23478	-1427	186	329	550	NO	24499	-1495	180	269	521
NW	25082	-1325	148	375	449	NW	25926	-1364	95	143	100
NE	25483	-1402	66	255	449	NE	26772	-1473	237	112	116
EM	23324	-1290	41	243	362	EM	24888	-1363	-52	149	324
WM	25656	-1448	114	413	502	WM	27108	-1505	-37	208	291
WN	25082	-1325	148	375	449	WN	25926	-1364	95	143	100
WS	27156	-1435	106	250	332	WS	29181	-1551	57	90	285
EA	26970	-1366	182	414	412	EA	28566	-1456	171	400	398
NT	30661	-1617	93	285	277	NT	32416	-1716	65	105	4
SE	30186	-1599	95	255	330	SE	31747	-1684	103	227	249
SO	26595	-1465	58	176	273	SO	28861	-1600	29	70	156
SW	26249	-1486	95	210	290	SW	28171	-1622	57	134	223

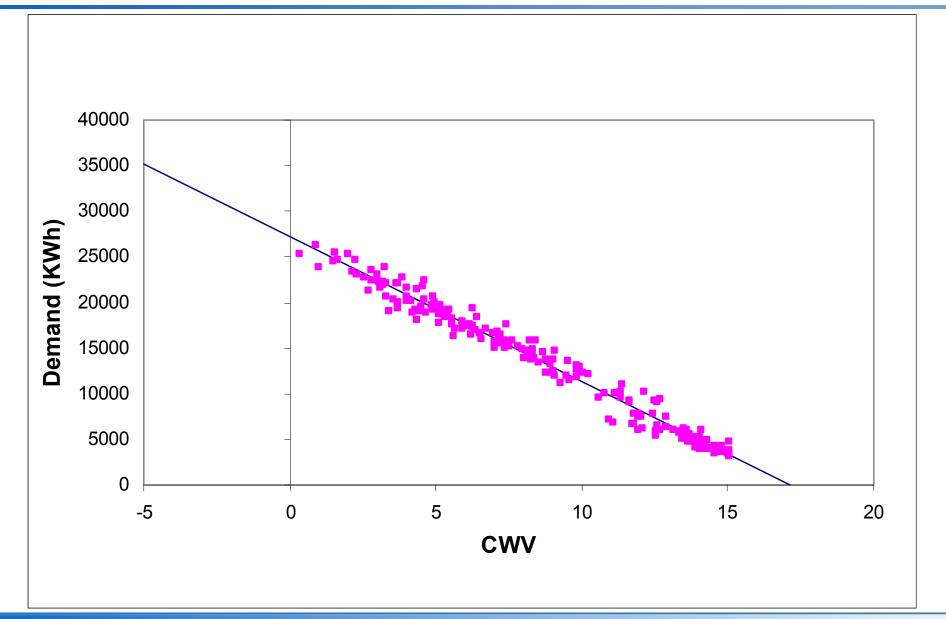
With some non-domestic in the samples:

Weekend factors generally less positive and some even negative

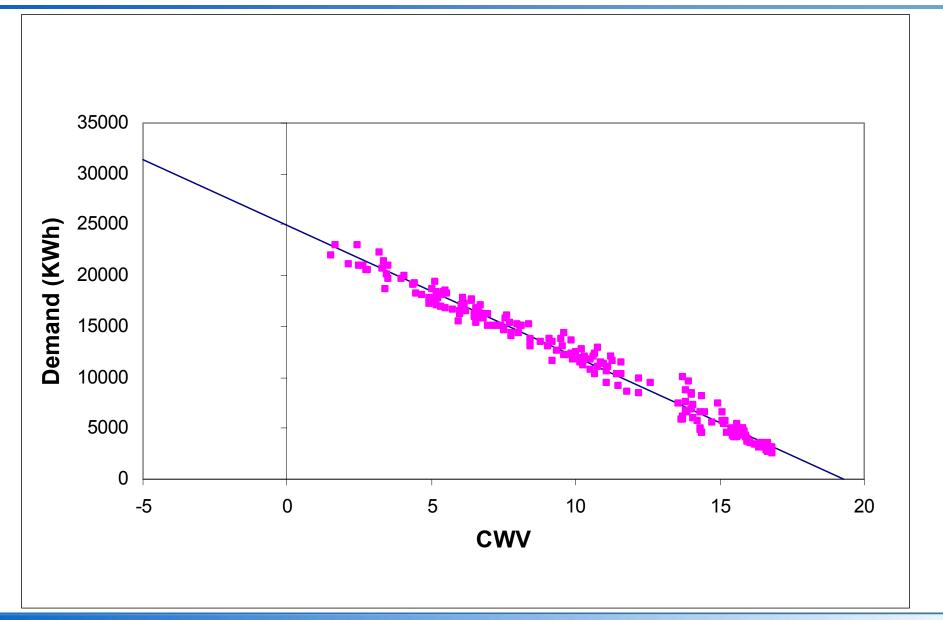
Will adversely impact weekend Scaling Factor offsets

Representing 0 - 73.2 MWh pa – Proposed Approach

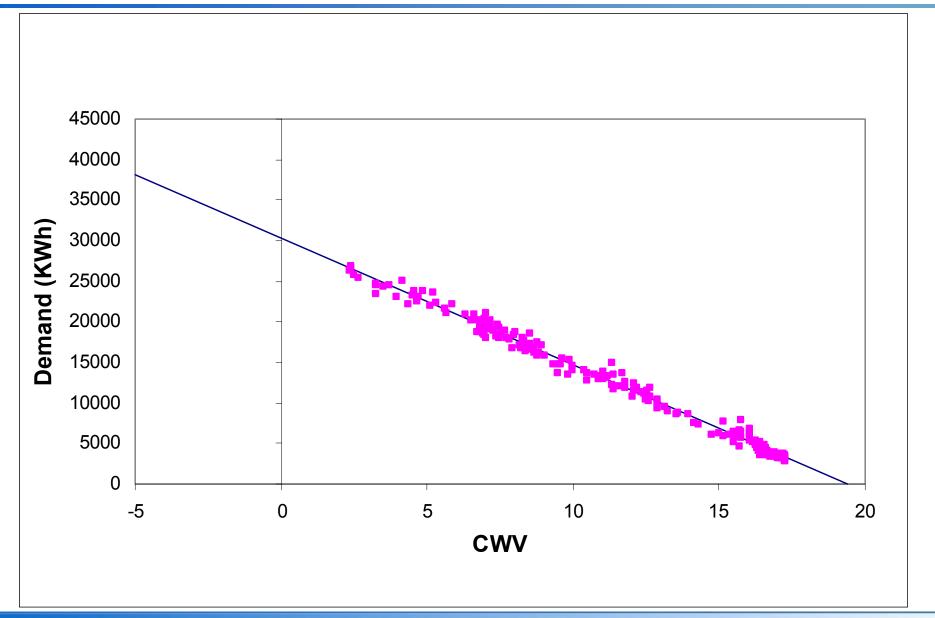
- Consequences of using smoothed models derived for "01B" EUC for gas year 2005/06 with non-domestic data
- Will have adverse effects on Weekend SF values
- Estimated effect: Fri: small effect up to 0.5% pts. Sat. up to 1% pts. Sun. up to 1.5%pts.


10 / 13 / 13 LDZs worse in respect of Fri / Sat / Sun

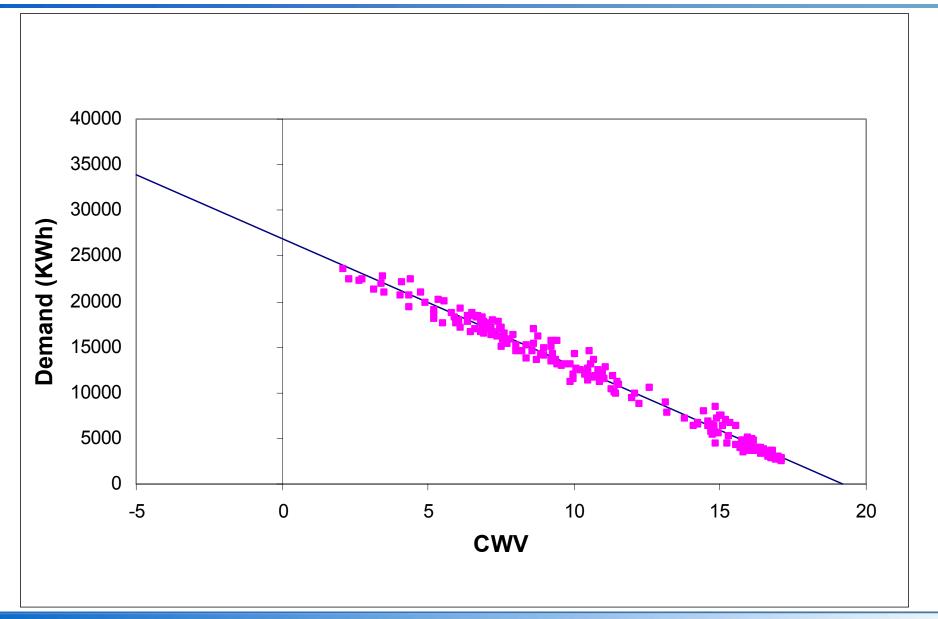
Therefore proposed approach is: (same as spring 2004)


- Domestic only smoothed model
- Consistently positive Fri/Sat/Sun weekend factors in smoothed model

X()Sel


Demand against CWV, Monday to Thursday, holidays included, SC LDZ, 0 - 73.2 MWh pa

Demand against CWV, Monday to Thursday, holidays included, NW LDZ, 0 - 73.2 MWh pa



Demand against CWV, Monday to Thursday, holidays included, NT LDZ, 0 - 73.2 MWh pa

X()serve

Demand against CWV, Monday to Thursday, holidays included, WS LDZ, 0 – 73.2 MWh pa

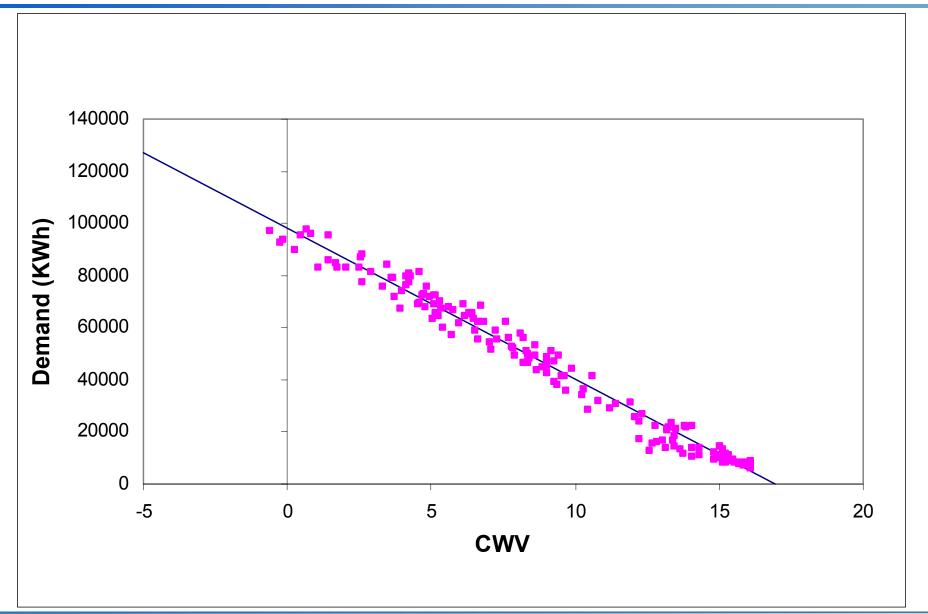
73.2 – 293 MWh pa 73.2 – 145 MWh pa 145 – 293 MWh pa

SC/NO/NW/WN 32 % 95 % (313) 33% 96 % (119) 32 % 95 % (194)

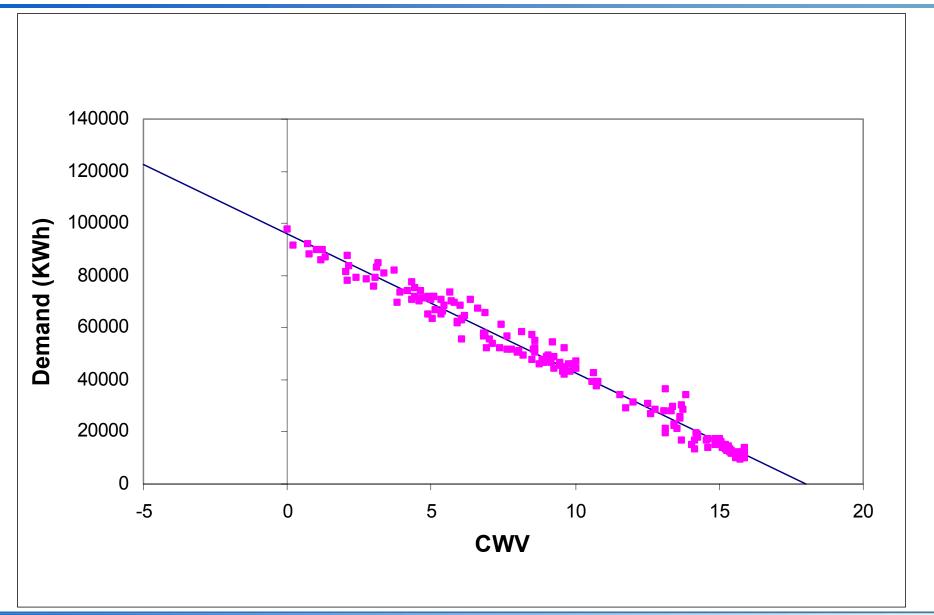
NE/EM/WM 30 % 96 % (267) **29 %** 96 % (130) **30 %** 95 % (137)

EA/NT/SE 33 % 97 % (348) **32 %** 97 % (133) **33 %** 96 % (215)

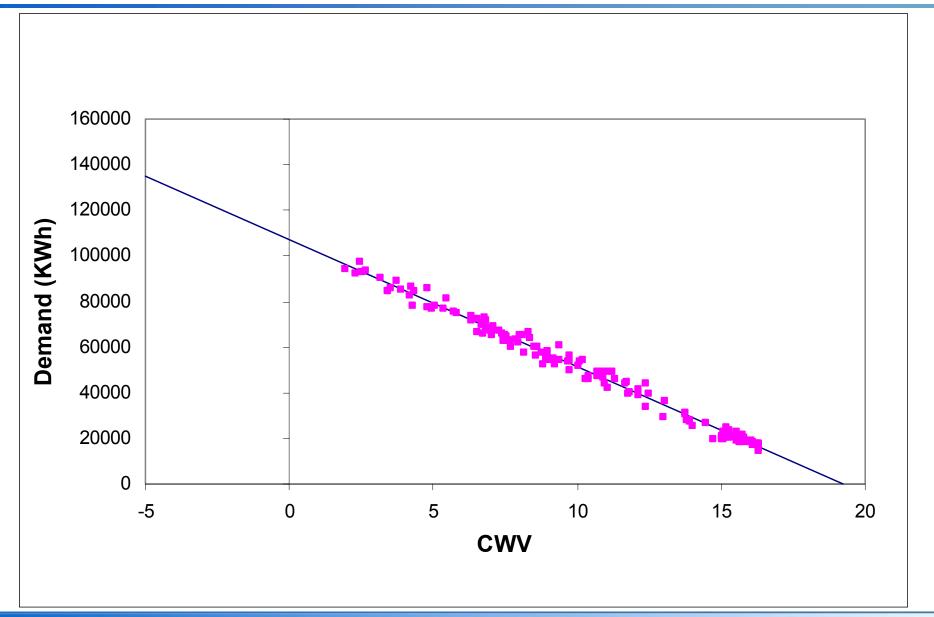
WS/SO/SW 30 % 97 % (278) **30 %** 97 % (149) **30 %** 97 % (129)


Indicative Load Factor R2 Multiple Correlation Coefficient (Sample Size)

Small NDM Indicative Load Factors 73.2 – 293 MWh pa


	Indicative Load Factor	R ² Multiple Correlation Coefficient	(Sample Size)
SC	36 %	97 %	(96)
NO	28 %	94 %	(99)
NW/WN	32 %	95 %	(118)
NE	29 %	93 %	(85)
EM	31 %	95 %	(96)
WM	30 %	97 %	(86)
WS	29 %	96 %	(78)
EA	32 %	96 %	(111)
NT	35 %	96 %	(129)
SE	31 %	96 %	(108)
SO	32 %	99 %	(100)
SW	29 %	96 %	(100)

X serve


Demand against CWV, Monday to Thursday, holidays included, NE LDZ, 73.2 – 293 MWh pa

Demand against CWV, Monday to Thursday, holidays included, WM LDZ, 73.2 – 293 MWh pa

Demand against CWV, Monday to Thursday, holidays included, SO LDZ, 73.2 – 293 MWh pa

X{>serve

Consumption Band Analysis – Indicative Load Factors

LDZ Group	732-1465 MWh pa	1465-2196 MWh pa
SC	40% 98% (224)	40% 98% (161)
NO/NW/WN	33% 96% (364)	36% 97% (362)
NE/EM/WM	33% 97% (538)	34% 97% (453)
EA/NT/SE	35% 98% (732)	37% 98% (577)
WS/SO/SW	32% 97% (433)	34% 97% (318)
Indicative Load Factor	R ² Multiple Correlation	on Coefficient (Sample Size)

Consumption Band Break at 1465 MWh pa

Indicative Load Factors

LDZ Group	2002/03 Data Set		2003/04 Data Set		2004/05 Data Set	
	732-1465 MWh pa	1465-2196 MWh pa	732-1465 MWh pa	1465-2196 MWh pa	732-1465 MWh pa	1465-2196 MWh pa
SC	41	39	39	40	40	40
NO/NW/WN	33	35	35	36	33	36
NE/EM/WM	33	33	33	34	33	34
EA/NT/SE	36	36	36	36	35	37
WS/SO/SW	31	35	32	34	32	34

No consistent differences in ILF above and below 1465 MWh pa across all LDZ groups in all three years

X{>serve

Consumption Band Analysis – Indicative Load Factors

LDZ Group	293-732 MWh pa	732-2196 MWh pa	293-2196 MWh pa
SC NO NW/WN NE EM WM EA NT SE	 39% 98% (103) 31% 97% (77) 35% 96% (136) 32% 96% (80) 34% 98% (125) 27% 94% (64) 35% 97% (122) 34% 97% (160) 33% 97% (170) 	 40% 98% (385) 32% 96% (260) 36% 97% (466) 35% 97% (305) 34% 98% (370) 30% 97% (316) 35% 97% (390) 36% 98% (429) 36% 98% (490) 	 40% 98% (488) 32% 96% (337) 36% 97% (602) 34% 97% (385) 34% 98% (495) 30% 97% (380) 35% 97% (512) 36% 98% (589) 35% 98% (660)
WS SO SW	 31% 95% (72) 30% 97% (84) 30% 97% (88) 	 33% 97% (168) 31% 98% (320) 34% 97% (263) 	 33% 97% (240) 31% 98% (404) 34% 97% (351)

Indicative Load Factor R² Multiple Correlation Coefficient

t (Sample Size)

WAR Band Analyses – Disposition of Validated Sample

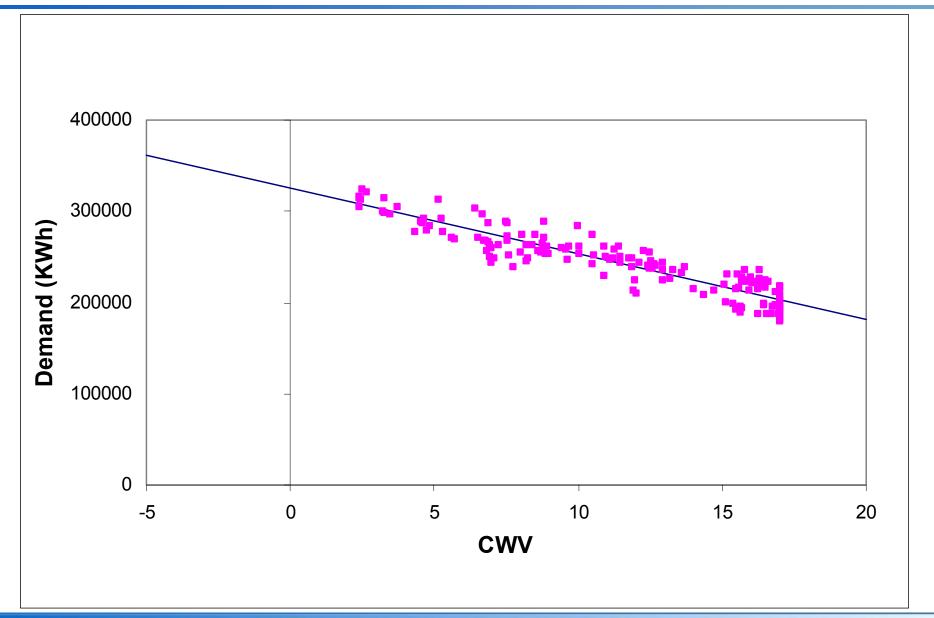
293 - 2196 MWh pa

LDZ	0.00 - 0.42	0.42 - 0.50	0.50 - 0.58	0.58 - 1.00	Total
SC	152	167	116	53	488
NO	63	101	125	48	337
NW/WN	162	163	191	86	602
NE	78	112	106	89	385
EM	89	138	142	126	495
WM	75	84	106	115	380
EA	85	144	145	138	512
NT	93	194	171	131	589
SE	64	242	191	163	660
WS	43	64	80	53	240
SO	73	97	109	125	404
SW	78	86	88	99	351
TOTAL	1055	1592	1570	1226	5443

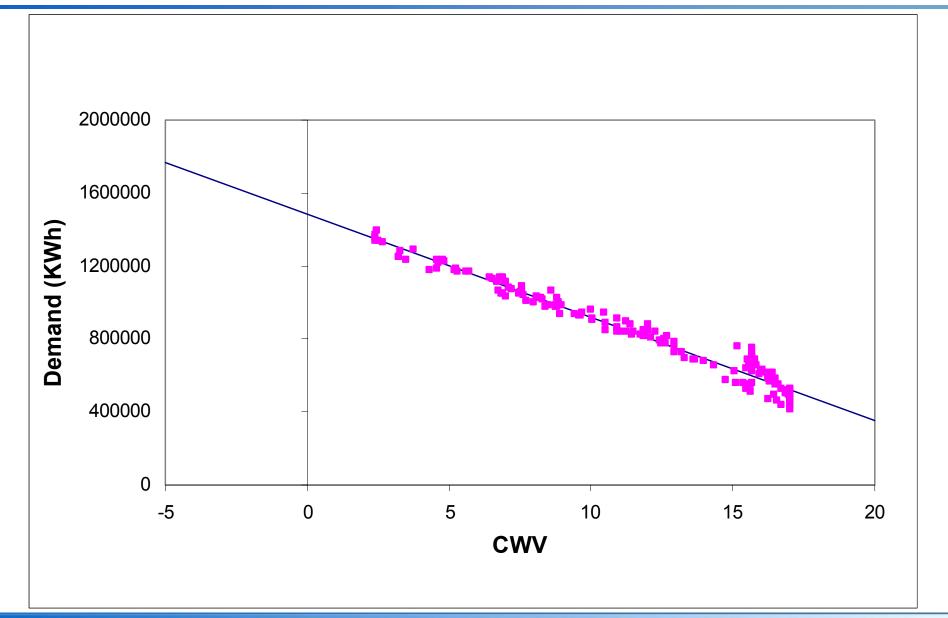
X serve

WAR Band Analyses – Indicative Load Factors

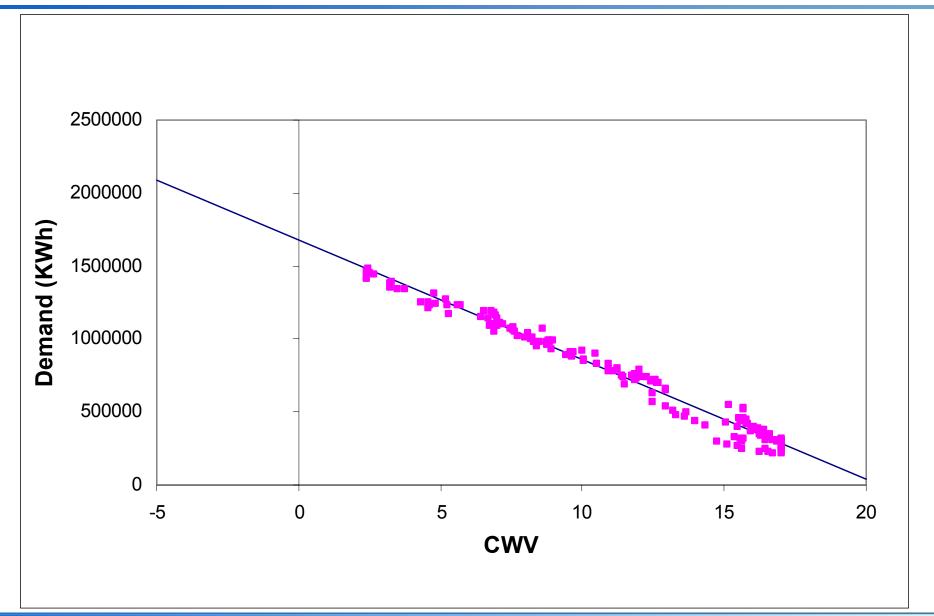
293 - 2196 MWh pa

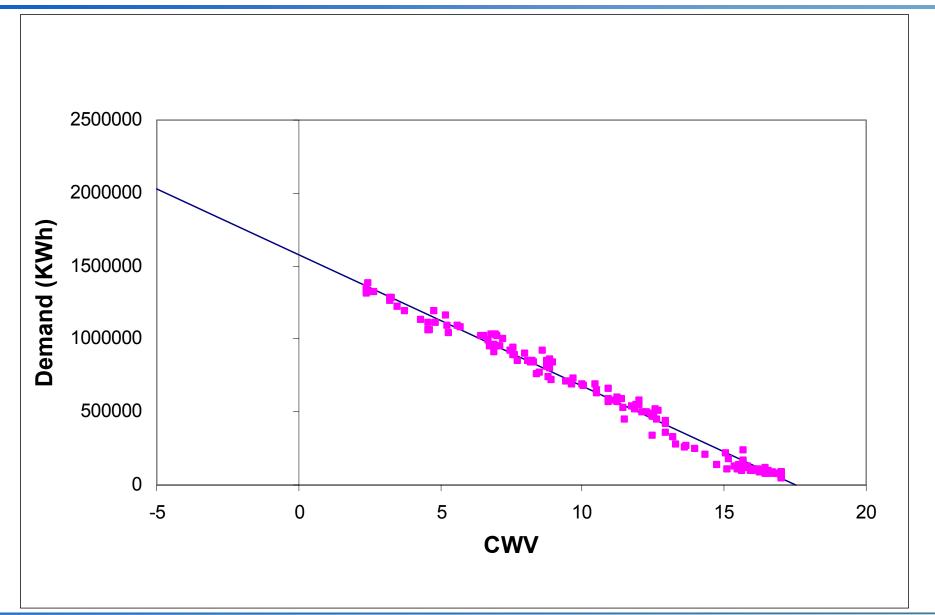

LDZ	0.00 - 0.42	0.42 - 0.50	0.50 - 0.58	0.58 - 1.00
SC	60 % 97% (152)	42% 98% (167)	31% 97% (116)	25% 97% (53)
NO	58% 92% (63)	38% 95% (101)	27% 94% (125)	21% 96% (48)
NW/WN	62% 94% (162)	42% 97% (163)	28% 95% (191)	24% 97% (86)
NE	58% 96% (78)	43% 98% (112)	30% 96% (106)	23% 95% (89)
EM	63% 95% (89)	43% 98% (138)	31% 97% (142)	23% 97% (126)
WM	55% 97% (75)	39% 97% (84)	28% 96% (106)	21% 96% (115)
EA	61% 96% (85)	46% 97% (144)	32% 95% (145)	25% 97% (138)
NT	64% 93% (93)	45% 97% (194)	32% 98% (171)	25% 96% (131)
SE	63% 88% (64)	46% 97% (242)	32% 97% (191)	24% 97% (163)
WS	59% 89% (43)	42% 97% (64)	29% 94% (80)	22% 96% (53)
SO	60% 92% (73)	42% 97% (97)	30% 97% (109)	22% 96% (125)
SW	62% 94% (78)	43% 96% (86)	29% 96% (88)	23% 96% (99)

Indicative Load Factor


R² Multiple Correlation Coefficient

(Sample Size)





X{>serve

X()serve

Small NDM - Proposed Data Aggregations

0 – 73.2 MWh pa

Analyse by LDZ (domestic sites only)

- 73.2 293 MWh pa
- 293 2196 MWh pa

Analyse by LDZ

WAR band analysis by LDZ Consumption Band analysis by LDZ (split 293-732 & 732-2196 MWh pa for consumption band analysis)

Small NDM EUC Smoothed Models (provisional)

Number "straight"	37	(46)
Number with cut-off	29	(36)
Number with summer reduction	110	(89)
Number with no slope	0	(0)
Number with cut-offs and reductions	20	(15)

Note: last year's figures in brackets

2005 NDM Proposals (end June)

Report - Proposals

(incl. Appendices) - ALPs, DAFs, load factors

- + model parameters
 - performance evaluation

CD

