

LDZ Transportation C London Distribution	
I	ssued 1st October 2006

Contents

No		Page
NO		
1	INTRODUCTION	2
2.	LDZ SYSTEM CHARGES	4
3	LDZ CUSTOMER CHARGES	6
4	OTHER CHARGES	7
5	EXAMPLES	9
API	PENDIX A	12
Е	STIMATION OF PEAK DAILY LOAD FOR NON-DAILY METERED SUPPLY POINTS	12
API	PENDIX B	15
В	USINESS RULES FOR INTERRUPTIBLE SUPPLY POINTS	15
API	PENDIX C	18
A 1 2		18 18 18
3		18
4	. STRUCTURE OF CHARGES	19
5 6		20 24
0	. LDZ CUSTOMER AND OTHER CHARGES METHODOLOGY	24

1 Introduction

This publication sets out the LDZ transportation charges which apply from 1st October 2006 for the use of the London Network, as required by Standard Special Condition A4 of the Gas Transporter Licence. This document does not override or vary any of the statutory, licence or Network Code obligations.

For more information on the charges set out below, contact the transporter's Pricing team on 01926 655834.

1.1 Network Code

The Network Code is supported by an integrated set of computer systems called UK Link. The charges and formulae in this booklet will be used in the calculation of charges within UK Link, which are definitive for billing purposes.

There are a number of areas of the Network Code that impact upon the cost to shippers of using the transportation network, such as imbalance charges, scheduling charges, capacity over-runs and ratchets, top-up neutrality charges and contractual liability. Reference should be made to the Network Code – as modified from time to time – for details of such charges and liabilities.

1.2 Units

Commodity charges are expressed and billed in pence per kilowatt hour (kWh).

Capacity charges are expressed and billed in pence per peak day kilowatt hour per day.

Fixed charges are expressed and billed in pence per day.

1.3 Invoicing

xoserve produce and issue the invoices that are derived from the transportation charges shown within this publication. To clarify this link between charging and invoicing, charge codes and invoice names are included in the tables.

For more information on invoicing, please contact xoserve, the Invoicing Service Provider, via email at **xo css billing@xoserve.com**.

1.4 The distribution transportation price control formula

Transportation charges are derived in relation to a price control formula which is set by Ofgem, the gas and electricity market regulator for the transportation of gas. This formula dictates the maximum revenue that can be earned from the transportation of gas. Should more or less than the maximum permitted revenue be earned in any formula year, then a compensating adjustment is made in the following year.

Distribution revenue recovery is split between LDZ system charges and customer charges. The relative level of these charges is based on the relative level of costs allocated to these areas of activity.

1.5 Firm transportation

Firm distribution transportation charges comprise LDZ capacity and commodity charges plus customer charges.

1.6 Interruptible transportation

Interruptible transportation is available for supply points with Annual Quantities (AQs) of over 5,860 MWh per annum.

For supply points which have been nominated by a shipper as interruptible, the shipper will not pay the capacity element of the LDZ standard charge. The commodity element of the LDZ standard charge

or, alternatively the optional LDZ charge if appropriate will continue to apply. Where the transporter nominates a supply point to be interrupted for more than 15 days in a particular year (measured from 1 April to 31 March) there is a transportation charge credit. For each day of interruption over 15 days, a transportation charge credit, equivalent to 1/15 of the annual LDZ standard capacity charge avoided by having interruptible rather than firm transportation is payable to the shipper. The transporter has the right to interrupt these supply points for up to 45 days each year. Appendix B details the business rules for interruptible supply points.

To help the transporter run the network safely and securely, the Network Code defines two special types of interruptible supply points. These are Network Sensitive Load (NSL) and Transporter Nominated Interruptible (TNI).

NSLs are supply points where specific interruption may be required to maintain the supply of gas to firm supply points in the same area.

TNIs are supply points where the transporter reserves the right to interrupt for more than 45 days each year.

A number of services related to interruptible supply points are offered:

- Allocation arrangements allow more than one shipper / supplier to supply interruptible gas to sites with AQs in excess of 58,600 MWh per annum. This flexibility of supplier enables the end user to make greater use of the competitive market and allows for alternative provision of gas during commercial interruption. Further details of this service are given in Section 4.2.
- The Partial Interruption service is designed to allow shippers to reduce offtake rates at supply points (to predetermined levels agreed between the shipper and the end user) where capacity exists, so that the site remains on a part-load, where otherwise it would have been fully interrupted.
- The Interruptible Supply Point Firm Allowance (IFA) is available to all interruptible supply points. It allows a guaranteed supply of 14,600 kWh per day (this figure can be higher if the capacity is available), where this allowance is subject to normal firm transportation charges. This enables end users to maintain their critical processes when their supply is interrupted.
- Transfer of Firm Offtake Capability. This allows a shipper to release capacity allocated to a firm supply point in order to meet the requirements of an interruptible supply point during an interruption notice. This is subject to system constraints and other eligibility criteria.

Details of all the above interruption services are available from gas suppliers / shippers or from the transporter on **01455 893147**.

1.7 Theft of gas

The licensing regime places incentives on transporters, shippers and suppliers to take action in respect of suspected theft of gas. Certain costs associated with individual cases of theft are recovered through transportation charges with the transporter remaining cash neutral in the process.

2. LDZ System Charges

The standard LDZ system charges comprise capacity and commodity charges, with separate functions for directly connected supply points and for Connected System Exit Points (CSEPs).

Where LDZ charges are based on functions, these functions use Supply Point Offtake Quantity (SOQ) in the determination of the charges. At daily metered (DM) firm supply points the SOQ is the registered supply point capacity. For non-daily metered (NDM) supply points, the SOQ is calculated using the supply point End User Category (EUC) and the appropriate load factor. Details of EUCs and load factors are shown in Appendix A of this document.

For interruptible supply points the rule set out in Section B 4.6.5 (Bottom-stop supply point capacity) of the Network Code applies in the determination of the LDZ charges.

2.1 Directly Connected Supply Points

The unit charges and charging functions used to calculate charges to directly connected supply points are set out in Table 2.1 below.

Table 2.1 Directly connected supply points

Invoice	Charge Code
LDZ Capacity	ZCA
LDZ Commodity	ZCO

	Capacity	Commodity
	pence per peak day kWh per day	pence per kWh
Up to 73,200 kWh per annum	0.0443	0.1181
73,200 to 732,000 kWh per annum	0.0410	0.1093
732,000 kWh per annum and above	0.1946 x SOQ ^ -0.1806	0.6781 x SOQ ^ -0.2121
Subject to a minimum rate of	0.0044	0.0103
Minimum reached at SOQ of	1,295,235,123 kWh	374,611,367 kWh

2.2 Connected Systems

A separate charging function for transportation to Connected System Exit Points (CSEPs) was introduced from 1 October 2000. This function reflects the view that transportation to CSEP loads typically makes less use of the LDZ system than to other similar-sized loads. In the calculation of LDZ charges payable, the unit commodity and capacity charges are based on the supply point capacity equal to the CSEP peak day load for the completed development irrespective of the actual stage of development. The SOQ used is therefore the estimated SOQ for the completed development as provided in the appropriate Network Exit Agreement (NExA). For any particular CSEP, each shipper will pay identical LDZ unit charges regardless of the proportion of gas shipped. Reference needs to be made to the relevant NExA or CSEP ancillary agreement to determine the completed supply point capacity.

Table 2.2 Connected Systems

Invoice	Charge Code
ADC	891
ADC	893

	Capacity	Commodity
	pence per peak day kWh per	pence per kWh
Up to 73,200 kWh per annum	0.0443	0.1181
73,200 to 732,000 kWh per annum	0.0410	0.1093
732,000 kWh per annum and above	0.2059 x SOQ ^ -0.1939	0.6472 x SOQ ^ -0.2131
Subject to a minimum rate of	0.0044	0.0103
Minimum reached at SOQ of	410,901,134kWh	274,345,541 kWh

2.3 Optional LDZ Charge

The optional LDZ tariff is available, as a single charge, as an alternative to the standard LDZ system charges. This tariff may be attractive to large loads located close to the NTS. The rationale for the optional tariff is that, for large LDZ loads located close to the NTS or for potential new LDZ loads in a similar situation, the standard tariff can appear to give perverse economic incentives for the construction of new pipelines when LDZ connections are already available. This could result in an inefficient outcome for all system users.

The charge is calculated using the function below:

Invoice	Charge Code
ADU	881

Pence per peak day kWh per day
902 x [(SOQ) ^{^-0.834}] x D + 772 x (SOQ) ^{^-0.717}

where: (SOQ) is the Registered Supply Point Capacity, or other appropriate measure, in kWh per day and D is the direct distance, in km, from the site boundary to the nearest point on the NTS. Note that ^ means "to the power of ..."

Further information on the optional LDZ tariff can be obtained from the transporter's Pricing team on 01926 655834.

3 LDZ Customer Charges

For supply points with an AQ of less than 73,200 kWh per annum, the customer charge is a commodity charge.

For supply points with an AQ between 73,200 and 732,000 kWh per annum, the customer charge is made up of a fixed charge which depends on the frequency of meter reading, plus a capacity charge based on the registered supply point capacity (SOQ).

For supply points with an AQ of over 732,000 kWh per annum, the customer charge is based on a function related to the registered supply point capacity (SOQ).

Table 3 LDZ Customer charges

Up to 73,200 kWh per annum

Invoice	Charge Code
Commodity	CCO

	pence per kWh
Commodity charge	0.1316

73,200 kWh up to 732,000 kWh per annum

Invoice	Charge Code
LDZ capacity	CFI

Fixed charge	pence per day
Non-monthly read supply points	13.8704
Monthly read supply points	14.7688

Invoice	Charge Code	
LDZ Capacity	CCA	

	Pence per peak day kWh per day
Capacity charge	0.0016

732,000 kWh per annum and above

Invoice	Charge Code	
LDZ Capacity	CCA	

	Pence per peak day kWh per day	
Charging function	0.0337 x SOQ ^ -0.2100	

4 Other Charges

Other Charges include administration charges at Connected System Exit Points, Shared Supply Meter Points and Must Reads.

4.1 Connected System Exit Points

A CSEP is a system point comprising one or more individual exit points which are not supply meter points. This includes connections to a pipeline system within the DN operated by another Gas Transporter.

The calculation of LDZ charges payable for shipping to CSEPs is explained in section 2.2.

There is no customer charge payable for connected systems, however separate administration processes are required to manage the daily operations and invoicing associated with CSEPs, for which an administration charge is made.

The administration charge which applies to CSEPs containing NDM and DM sites is:

CSEP administration charge

Charge per supply	0.1534 pence per day
point	(£0.56 per annum)

The invoice and charge codes are:

	Invoice	Charge Code
DM CSEP	ADU	883
NDM CSEP	ADC	894

4.2 Shared supply meter point allocation arrangements

An allocation service is offered for daily metered supply points with AQs of more than 58,600 MWh per annum. This allows up to four (six for VLDMCs) shippers / suppliers to supply gas through a shared supply meter point.

The allocation of daily gas flows between the shippers / suppliers can be done either by an appointed agent or by the transporter.

The administration charges which relate to these arrangements are shown below. Individual charges depend on the type of allocation service nominated and whether the site is telemetered or non-telemetered.

The charges are (expressed as £ per shipper per supply point):

Invoice	Charge Code	
ADU	883	

Agent Service

7.90.11.00				
	Telemetered	Non-telemetered		
Set-up charge	£107.00	£183.00		
Shipper-shipper transfer charge	£126.00	£210.00		
Daily charge	£2.55	£2.96		

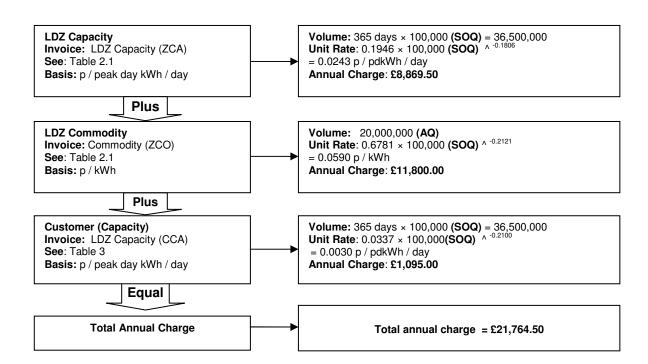
Transporter Service

	Telemetered	Non-telemetered
Set-up charge	£107.00	£202.00
Shipper-shipper transfer charge	£126.00	£210.00
Daily charge	£2.55	£3.05

4.3 Must Reads

If a shipper is unable to provide meter readings in compliance with the Network Code, the transporter may initiate processes to obtain a meter read, referred to as a 'must read'. A charge will be made for each must read and will depend on the number of meters at a supply point requiring a must read at the same time. If there is one meter at the supply point, the charge will be £40, for two meters the charge will be £60 and for three or more meters the charge will be £80. These charges are based on the typical cost of such reads which may include multiple visits to the site and obtaining and executing a warrant of entry.

5 Examples

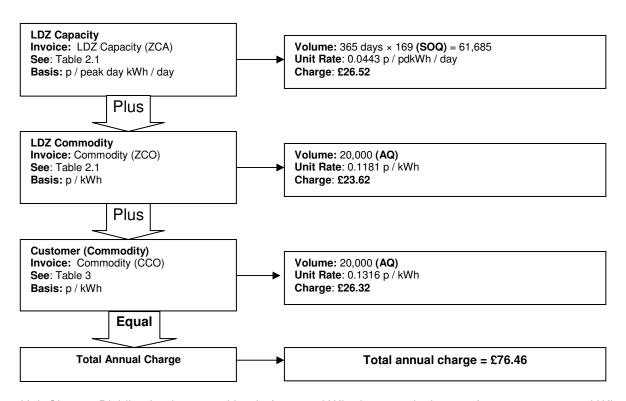

Notes

- 1. Charges produced by UK Link are definitive for charging purposes. Calculations below are subject to rounding and should be regarded as purely illustrative.
- 2. The examples provided refer to a customer in Twickenham, London DN and NT LDZ.

Example 1

A shipper has a daily metered customer with an annual consumption (AQ) of 20,000,000 kWh and a registered supply point capacity (SOQ), booked directly by the shipper of 100,000 kWh per day.

Process Calculations Used



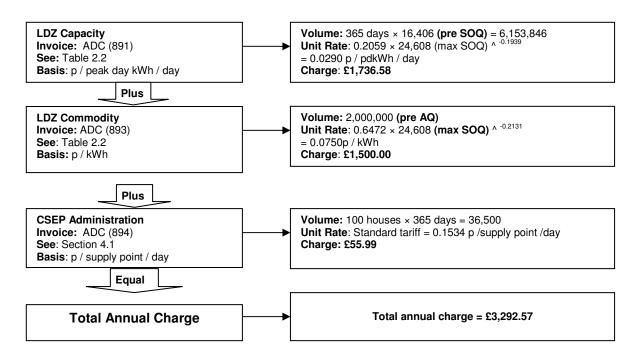
Unit Charge: Dividing by the annual load of 20,000,000 kWh gives a unit charge of 0.1088 pence per kWh. If the above example was an interruptible load, LDZ capacity charges would not be levied. This would reduce the total charge for a shipper nominated interruptible load by £8,869.50 to a new total of £12,895.00. For each additional day of interruption over 15 days, the Distribution Transportation Charge Credit would be £591.30 per day.

Example 2

A shipper has a domestic customer in Twickenham (**NT LDZ**). Suppose the load has an **AQ** of **20,000** kWh per annum. Using the definition of end user categories table in Appendix A, this annual load places the end user in category E0601B. Using the appropriate small NDM supply points table of load factors, it can be seen that the load factor for such a site in the NT LDZ is 33.4%. The peak daily load (**SOQ**) is therefore $20,000 \div (365 \times 0.334) = 164$ kWh.

Process Calculations Used

Unit Charge: Dividing by the annual load of 20,000 kWh gives a unit charge of 0.3823 pence per kWh.


Example 3

Suppose that instead of supplying just one domestic customer (as in Example 2) the shipper actually supplies a connected system presently comprising 100 domestic customers and the completed connected system will comprise 150 domestic premises. Suppose that each of these premises has the same AQ of 20,000 kWh per annum.

Prevailing AQ (pre AQ)	100 houses × 20,000 (AQ) = 2,000,000 kWh	
Maximum AQ (max AQ)	150 houses × 20,000 (AQ) = 3,000,000 kWh	
Prevailing SOQ (pre SOQ)	2,000,000 ÷ (365 × 0.334) = 16,406 kWh	
Maximum SOQ (max SOQ)	3,000,000 ÷ (365 × 0.334) = 24,608 kWh	

Note that the prevailing annual and peak day loads of the connected system in effect would change over the year however, for simplicity; these have been assumed as constant in this example.

Process Calculations Used

Unit Charge: Dividing by the annual load of 2,000,000 kWh gives a unit charge of 0.1646 pence per kWh.

Appendix A

Estimation of peak daily load for non-daily metered supply points

For non-daily metered (NDM) supply points, the peak daily load is estimated using a set of End User Categories (EUCs). Each NDM supply point is allocated to an EUC. In each LDZ each EUC has an associated load factor, as listed in Tables A.2 and A.3. The data in these tables applies for the gas year 1 October 2006 to 30 September 2007.

In the tables 'XX' refers to the LDZ Code (e.g. NT).

These EUCs depend upon the annual quantity (AQ) of the supply point and, in the case of monthly read sites, the ratio of winter to annual consumption where available.

Monthly read sites

It is mandatory for supply points with an annual consumption greater than 293 MWh to be monthly read, however, at the shipper's request, sites below this consumption may also be classified as monthly read.

For monthly read sites where the relevant meter reading history is available, the winter: annual ratio is the consumption from December to March divided by the annual quantity. If the required meter reading information is not available, the supply point is allocated to an EUC simply on the basis of its annual quantity.

The peak load for an NDM supply point may then be calculated as:

$$\frac{AQ \times 100}{365 \times LoadFactor}$$

Example

For a supply point in North Thames LDZ with an annual consumption of 1,000 MWh per annum.

Assume consumption December to March inclusive is 540 MWh.

Winter: annual ratio = 540 ÷ 1000 = 0.54

For a site with an annual consumption of 1,000 MWh, a ratio of 0.54 falls within winter: annual ratio band W03 and the site is thus within End User Category NT:E0604W03.

For a site in this category, the load factor is 32.5% and the peak daily load is therefore

$$\frac{1000 \times 100}{365 \times 32.5} = 8.43 \text{MWh}$$

If the required meter reading information is not available to calculate the winter: annual ratio, the supply point is allocated to an EUC simply on the basis of its annual quantity, in this case NT:E0604B.

For a site in this category, the load factor is 36.3% and the peak daily load is therefore

$$\frac{1000 \times 100}{365 \times 36.3} = 7.55 \text{ MWh}$$

Six monthly read sites

In the case of six monthly read sites, the supply point is allocated to an EUC simply on the basis of its annual quantity.

Example

For a supply point in NT LDZ with an annual consumption of 200 MWh per annum, the EUC will be NT:E0602B.

For a site in this category, the load factor is 35.2% and the peak daily load is therefore

$$\frac{200 \times 100}{365 \times 35.2} = 1.56 \text{ MWh}$$

Notes

The term LDZ is applied in the context of its usage with reference to the Network Code daily balancing regime.

For supply points whose consumption is over 73,200 kWh and which include one or more NDM supply meter points, an end user category code can be found in the supply point offer generated by UK Link. This code may be correlated with the end user category code shown in Table A.1 by means of a lookup table issued separately to shippers. Copies are available from the xoserve Supply Point Administration Management team on **0121 713 5501.**

Daily metered supply points

The SOQ of daily metered sites is known and hence no load factor is required.

Supply points with annual consumptions greater than 58,600 MWh should be daily metered. However, a handful of sites remain as non-daily metered as a result of difficulties installing the daily read equipment. In such cases the end user category code XX:E0609B is used.

Firm supply points with an AQ above 73.2 MWh pa may, at the shipper's request, be classified as daily metered. All interruptible supply points are daily metered.

Consultation on end user categories

Section H of the Network Code requires the transporter to publish, * by the end of June each year, its demand estimation proposals for the forthcoming supply year. These proposals comprise end user category definitions, NDM profiling parameters (ALPs and DAFs), and capacity estimation parameters (EUC load factors). Analysis is presented to users and the Demand Estimation Sub-Committee (a sub-committee of the Network Code Committee) is consulted before publication of the proposals.

Table A.1 Definition of end user categories

The following tables define the end user category for particular LDZs by reference to annual consumption and winter: annual ratio, applicable from 1 October 2006 to 30 September 2007.

EUC	Annual Load	Winter Annual Ratios (WAR)			
Code	(MWh)	W01	W02	W03	W04
xx:E0601B	0 to 73.2	-	-	-	-
xx:E0602B	73.2 to 293	-	-	-	-
xx:E0603B	293 to 732	0.00 - 0.46	0.46 - 0.54	0.54 - 0.61	0.61 - 1.00
xx:E0604B	732 to 2,196	0.00 - 0.46	0.46 - 0.54	0.54 - 0.61	0.61 - 1.00
xx:E0605B	2,196 to 5,860	0.00 - 0.43	0.43 - 0.50	0.50 - 0.58	0.58 - 1.00
xx:E0606B	5,860 to 14,650	0.00 - 0.37	0.37 - 0.46	0.46 - 0.55	0.55 - 1.00
xx:E0607B	14,650 to 29,300	0.00 - 0.35	0.35 - 0.41	0.41 - 0.51	0.51 - 1.00
xx:E0608B	29,300 to 58,600	0.00 - 0.33	0.33 - 0.37	0.37 - 0.45	0.45 - 1.00
xx:E0609B	> 58,600	-	-	-	-

^{*} NDM Profiling and Capacity Estimation Algorithms for 2006/07, June 2006.

Table A.2 Small NDM Supply Points (Up to 2,196 MWh per annum)

xx: = LDZ =	NT
xx:E0601B	33.4%
xx:E0602B	35.2%
xx:E0603B	33.3%
xx:E0603W01	58.9%
xx:E0603W02	43.8%
xx:E0603W03	32.5%
xx:E0603W04	24.3%
xx:E0604B	36.3%
xx:E0604W01	58.9%
xx:E0604W02	43.8%
xx:E0604W03	32.5%
xx:F0604W04	24.3%

Table A.3 Large NDM Supply Points (2,196 and above MWh per annum)

xx: = LDZ =	NT
xx:E0605B	40.4%
xx:E0605W01	62.8%
xx:E0605W02	48.6%
xx:E0605W03	38.1%
xx:E0605W04	26.7%
xx:E0606B	45.0%
xx:E0606W01	76.4%
xx:E0606W02	55.3%
xx:E0606W03	42.4%
xx:E0606W04	29.7%
xx:E0607B	49.6%
xx:E0607W01	77.4%
xx:E0607W02	60.9%
xx:E0607W03	44.1%
xx:E067W04	31.6%
xx:E0608B	58.6%
xx:E0608W01	88.7%
xx:E0608W02	74.4%
xx:E0608W03	56.6%
xx:E0608W04	37.7%
xx:E0609B	66.4%

Appendix B

Business rules for interruptible supply points

1. Introduction

- 1.1. Contracted interruptible exit capacity remains unchanged at 45-day standard. Sites nominated by the transporter as TNI can be interrupted for a greater period.
- 1.2. All interruptible supply points continue to avoid the NTS (TO) exit capacity charge and the capacity element of the LDZ standard charge. The optional LDZ charge, if chosen as an alternative to the standard LDZ charge, continues to be payable for interruptible supply points.
- 1.3. For each occurrence of nominated interruption beyond 15 days an additional credit will be offered. The transporter conducts determination of cumulative occurrences of nominated interruption on a site-specific basis.
- 1.4. These business rules became effective on 1 October 2002 and refer to additional interruption credits for above 15-day interruption.

2. Calculation of Payment

- 2.1. The credit will be calculated in accordance with the transporter's Pricing Methodology as established in PC74.
- 2.2. The charge quantity will be determined from the supply point registered interruptible exit capacity (SOQ) at the point of interruption multiplied by those qualifying occurrences of interruption in excess of 15 days as specified in sections 3 and 4 of this Appendix but subject to:
- 2.2.1. The charge quantity of any Partial interruptible site, including shared supply points, being limited to that quantity (kWh rate) of exit capacity tranche(s) that was actually requested by the transporter for interruption.
- 2.2.2. Subject to 2.2.1 above, such shared supply point tranche(s) charge quantity will, where more than one interruptible shared user holds interruptible exit capacity at the shared supply point, be split by each user in ratio to such user's interruptible initial (D-1) gas flow nomination as a percentage of the total aggregate interruptible initial (D-1) gas flow nomination for the shared supply point.
- 2.2.3. The charge quantity of any IFA site being limited to that supply point registered interruptible exit capacity net of any firm exit capacity entitlement specified within each site IFA agreement.
- 2.2.4. The charge quantity of any interruptible NTS CSEP being limited to that quantity (kWh rate) of exit capacity that was actually requested on the day by the transporter for interruption.
- 2.2.5. Subject to 2.2.4 above, such NTS CSEP charge quantity will, where more than one interruptible user is registered at the NTS CSEP, be split by each user in ratio to such user's interruptible initial (D-1) gas flow nomination as a percentage of the total aggregate interruptible initial (D-1) gas flow nomination for the NTS CSEP.
- 2.3. For the avoidance of doubt, a shared user's interruptible supply point capacity (SOQ), or such tranche under 2.2.1 above, will be used for charge quantity purposes, and not the shared supply point aggregate interruptible capacity (SSP SOQ).
- 2.4. User proposed ratios as alternatives to mechanisms described under 2.2.2 and 2.2.5 above will not be allowed.
- 2.5. Supply point data at the point of interruption will be used for charge calculation purposes.

- 2.6. Payment constructed from charge quantities determined in accordance with this section 2 will not be the subject of later reconciliation should any component capacity subsequently change prospectively within the formula year.
- 2.7. The registered shipper at the point of interruption will be the qualifying shipper for receipt of any payment.

3. Count of Interruptible Days

- 3.1. A count of interruption occurrence will be maintained for each site within each formula year, with each day or part day of interruption representing an increment of 1.
- 3.2. The count will include such occurrence of qualifying interruption as defined within section 4 below.
- 3.3. The count will start from zero on 1st April of each formula year beginning at April 2002.
- 3.4. The count will end on 31st March of each formula year.
- 3.5. This count will be used solely for determining the level of credit due, if any, for each site where the frequency of nominated interruption exceeds 15 days within any formula year, monitoring of transportation contract interruption will be maintained separately for each gas year.

4. Qualifying Interruption

- 4.1. The count of qualifying interruptible days under section 3 above will increment, but subject to 4.3 below, where curtailment of gas supply was due to:
- 4.1.1. interruption arising from an NTS or LDZ constraint within the transporter's transportation system;
- 4.1.2. interruption arising for Test purposes as described within Network Code section G 6.7.3 (b).
- 4.2. The count of qualifying interruptible days under section 3 above will not increment where curtailment of gas supply was due to:
- 4.2.1. emergency interruption;
- 4.2.2. any form of commercial interruption instigated by a shipper.
- 4.3. The transporter's determination of a site for interruption will increment that site's count of interruptible days under section 3 above.
- 4.4. Where the transporter has called interruption, a User can request that an alternative site(s) should be interrupted as described in section G 6.8.2 of the Network Code. In such circumstances the transporter will, for the purposes of section 3 above, maintain a count based on the site the transporter originally nominated for interruption.
- 4.5. Failure to interrupt of the transporter proposed site or shipper proposed alternative site(s), will result in a reduction by 1 (to a minimum of zero) of the site count of interruptible days determined under 4.3 above and such that:
- 4.5.1. no payment will be made for the transporter proposed and shipper accepted site that subsequently fails to interrupt;
- 4.5.2. no payment will be made for the transporter proposed site where shipper substituted for a matched target volume site that subsequently fails to interrupt;
- 4.5.3. where multiple sites are substituted by a shipper, the payment(s) made to the transporter proposed site(s) will be reduced by that shipper substituted target volume identified as failing to interrupt, with such volume reduction being applied in site highest unit charge rate ranked order.

5. Unit Rate

- 5.1. The unit rate will be expressed in pence per kWh of peak day capacity and will be the rate as determined by Pricing Methodology PC74.
- 5.2. NTS and LDZ unit rates will be 1/15th of the annual (daily rate × 365) NTS (TO) exit capacity rates and LDZ standard capacity rates valid at the point of interruption, and will be site-specific rates applied to occurrences of qualifying interruption in excess of 15 days.
- 5.3. Payment constructed from unit rates determined in accordance with this section 5 will not be the subject of later reconciliation should firm NTS (TO) exit capacity rates or LDZ standard capacity rates, or any peak capacity component contained within such rate calculation, subsequently change within the formula year.
- 5.4. For the avoidance of doubt, User election of the optional LDZ tariff excludes such sites from qualification for LDZ payments in respect of interruption in excess of 15 days, such sites will still be eligible for receipt of any NTS component.

6. Invoice

- 6.1. Payment of all credits accrued in a calendar month will be made within the following month.
- 6.2. Subject to 4.5 above, the transporter will not issue a payment where it has reasonable grounds to believe that such payment is dependent upon the outcome of failure to interrupt investigation. Payment will be released as soon as practically possible should such failure to interrupt be disproved.

7. Information Provision

7.1. The transporter will publish the count of interruptible days as specified within section 3 above where that supply point count exceeds 12 days, publication will be at an aggregate LDZ or aggregate NTS level. The information in 7.1 will be published on the transporter's web site and updated on a weekly basis.

Appendix C

APPLICATION OF TRANSPORTATION CHARGING METHODOLOGY

1. Introduction

Standard Special Condition A4 of the transporter's Gas Transporter (GT) Licence requires the transporter to establish a charging methodology and to set out the application of the methodology, showing the methods and principles on which the transportation charges are based. The present charging methodology was introduced in 1994 and has been modified from time to time in accordance with the GT Licence.

2. Price Control Formulae

The Maximum Allowed Revenue under the transportation controls is determined by a number of factors including:

- the volume of gas transported to supply points in various consumption bands within the distribution network;
- the indexation factor under the distribution formula, allowed revenue is adjusted each year by a
 factor equal to two percentage points less than the rate of inflation, measured on a prescribed
 historical basis by reference to the Retail Price Index (RPI -2);
- any under- or over-recovery brought forward under the control from the previous formula year (expressed by means of a separate "K" factor within each control).

The "K" correction factor is necessary because the level of charges set under the control depends on forecasts of some of the above elements. Outturn will inevitably differ from forecast, thus giving rise to variances between the amount of revenue generated (on an accruals basis) and that allowed under the control. The K factor enables correction for these variances by adjusting either upwards or downwards the maximum level of revenue allowed in the following formula year (taking interest into account).

3. Objectives of the Charging Methodology

The transportation charging methodology has to comply with objectives set out in the Licence under Standard Special Condition A5. These are to:

- reflect the costs incurred by the transporter and, subject to this principal consideration;
- facilitate competition between gas shippers and between gas suppliers; and
- take account of developments in the transportation business:

In addition to these Licence objectives the transporter has its own objectives for the charging regime. These are that the transportation charging methodology should:

- promote efficient use of the transportation system;
- · generate stable charges;
- be easy to understand and implement.

Before the transporter makes any changes to the methodology, it consults with the industry in accordance with Standard Special Condition A5 of the Licence. Ofgem has the right to veto any proposed changes to the methodology.

4. Structure of Charges

The structure of the transporter's transportation charges reflects the revised price control arrangements which came into effect from 1 April 2002 and amended from 1 April 2004. The LDZ charges are split between system related activities and customer related activities.

While total LDZ revenue is determined by the relevant price control, the share of this revenue to be recovered from the LDZ system charges and the LDZ customer charges respectively is based on the relative cost of each area of activity, including an asset-based adjustment scaled so that the final cost pools sum to the target allowed revenue.

The cost breakdown used as the basis for the October 2005 LDZ charges is set out below:

Table 4.1 LDZ Cost Breakdown %

LDZ System	LDZ Customer	Total LDZ
71.8	28.2	100

Having established by the above methods the target revenue to be derived from each main category of charge, the next stage is to set the charges within each of these charge categories. The methodology used to do this is described in the appropriate sections below.

5. LDZ System Charging Methodology

5.1 Introduction

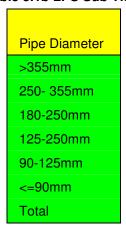

The Local Distribution Zone (LDZ) charges effective from 1 October 2005 are based on the methodology fully described in consultation paper PC68 - Review of LDZ Transportation Charges. The information shown relates to the national information utilised for PC68. The LDZ networks contain a series of pipe networks split into four main pressure tiers:

Table 5.1a LDZ Pressure Tiers

Pressure Tier	Operating Pressure
Local Transmission System (LTS)	7 - 38 bar
Intermediate Pressure System (IPS)	2 - 7 bar
Medium Pressure System (MPS)	75 mbar - 2 bar
Low Pressure System (LPS)	Below 75 mbar

The Low Pressure System itself accounts for 223,000 km out of the total 273,000 km of LDZ pipeline. In order to provide a more cost reflective basis for charging, the LPS is sub-divided on the basis of pipe diameter into six sub-tiers as shown below.

Table 5.1b LPS Sub Tiers

The principle underlying the LDZ charging methodology is that charges should reflect the average use of the network made by customers of a given size, rather than the actual use made by a particular customer. The latter methodology would be too complex to be a practical basis of charging. Analysis has shown that there is a good correlation between customer size and offtake tier. Large customers are typically supplied from higher-pressure tiers and small customers from lower pressure tiers. Such an approach avoids inconsistencies that may arise if neighbouring sites of similar size are actually connected to different pressure tiers.

5.2 Outline of Methodology

The methodology calculates the average cost of utilisation for each of the main pressure tiers of the LDZ system. Combining this with the probability of loads within a consumption band using that pressure tier generates a tier charge for an average load within that band. The summation of these tier charges gives the total charge for a load within the consumption band to use the LDZ system. The methodology uses average costs rather than marginal costs to reflect the total costs of using the system. The detail below describes the derivation of the capacity charge function and is therefore based on peak daily flows. A similar calculation, based on annual flows, is carried out to determine the commodity charge function. The data used is that from the most recent review carried out in 2001.

5.3 Determination of Costs

The costs related to each pressure tier were derived from the Activity Based Cost (ABC) model. These costs are split 50:50 into capacity and commodity elements.

Table 5.3a Determination of Tier Costs

Pre	ssure	% Total	Cost (£M)			
Tier	LPS Sub Tier	ABC	Total	Capacity (50%)		
LTS		15.7%	196.3	98.1		
IPS		5.4%	66.9	33.5		
MPS		16.2%	201.4	100.7		
LPS		62.7%	782.4	391.2		
TOTAL		100.0%	1247.0	623.5		

The split of LPS costs down to sub-tier level is based on year 2000 replacement cost data.

Table 5.3b Determination of LPS Costs

_		% Total 2000	Cost (£M)			
LPS Sub Tier		Replacement Cost	Total	Capacity (50%)		
LP1	>355mm	12.3%	96.2	48.1		
LP2	250-355mm	12.7%	99.4	49.7		
LP3	180-250mm	10.5%	82.2	41.1		
LP4	125-180mm	15.8%	123.6	61.8		
LP5	90-125mm	26.1%	204.2	102.1		
LP6	<90mm	22.6%	176.8	88.4		
TOTAL		100%	782.4	391.2		

5.4 Probability of Pressure Tier / Sub Tier Usage

The probability of a unit of gas, supplied to a customer of given size, having passed through the various pressure tiers / sub tiers within the LDZ network is estimated. This estimation is based on the results from a survey of the pressure tier / sub tier at which individual supply points are attached to the transporter's pipeline system in conjunction with the results of network analysis.

Table 5.4 System Usage Probability Matrix

Consumption Band	LDZ Tiers			LPS Sub Tiers					
(MWh)	LTS	IPS	MPS	LP1	LP2	LP3	LP4	LP5	LP6
0-73.2	97.8%	44.7%	94.4%	56.3%	76.7%	83.7%	77.5%	54.7%	17.1%
73.2 - 146.5	97.7%	44.6%	94.6%	55.5%	73.7%	76.7%	66.7%	42.7%	15.4%
146.5 – 293	97.8%	44.7%	94.2%	59.0%	78.2%	79.8%	67.8%	43.8%	17.2%
293 – 439	97.6%	45.0%	94.0%	52.8%	70.5%	72.8%	61.4%	40.0%	16.6%
439 – 586	97.6%	44.9%	94.1%	52.9%	70.3%	72.3%	61.4%	40.2%	16.8%
586 – 732	97.7%	44.6%	94.6%	55.0%	73.2%	73.9%	62.3%	43.1%	16.9%
732 - 2,931	97.5%	45.3%	93.7%	50.4%	66.8%	68.3%	57.2%	36.2%	13.4%
2,931 - 14,654	97.2%	44.6%	94.3%	43.1%	56.8%	54.9%	41.4%	20.9%	6.9%
14,654 - 58,614	96.7%	45.7%	91.3%	24.8%	31.8%	26.1%	15.2%	6.8%	0.0%
58,614 - 293,071	96.5%	50.0%	78.0%	10.3%	12.4%	6.5%	6.8%	4.1%	1.4%
>293,071	97.5%	49.1%	41.1%	1.2%	1.7%	1.6%	1.3%	1.0%	1.0%

Table 5.4 shows that for the 0-73.2MWh consumption band 97.8% (3,117 GWh from Table 5.5) of the total peak offtake for this consumption band (3,191 GWh) goes through the LTS, 44.7% goes through the IPS, and 94.4% through the MPS.

5.5 Pressure Tier / Sub Tier Usage Volumes

The application of usage probabilities to the LDZ peak day offtake volumes provides an estimate of the extent to which the different load bands make use of capacity across the pressure tiers.

LPS Sub Tiers Consumption Band LTS **IPS** MPS LP1 LP2 LP3 LP4 LP5 LP6 (MWh) 0-73.2 3,117 1,425 3,010 1,794 2,446 2,668 2,472 1.745 545 73.2 - 146.5 178 81 172 101 134 140 122 78 28 146.5 - 293 127 73 153 110 159 96 130 28 79 52 293 - 439 82 38 44 59 61 34 14 439 - 586 29 62 35 46 47 40 26 64 11 586 - 732 24 51 30 40 40 34 53 23 9 732 - 2,931 191 89 184 99 131 134 112 26

177

116

70

29

4,104

107

41

11

3.143

103

33

3.364

6

81

32

9

2.322

78

19

6

3.046

39

9

4

13

0

84

58

45

35

1,981

183

123

87

69

4,306

Table 5.5 Peak Daily Capacity Utilisation (GWh)

5.6 Cost per Unit of Capacity Utilised

Total

2,931 - 14,654

>293,071

14,654 - 58,614

58,614 - 293,071

The cost of providing capacity utilised on the peak day within each pressure tier / sub tier per unit of capacity is calculated by the division of capacity related costs, set out in section 5.2, by the volume of capacity utilised. In these calculations the LPS is not treated as a single entity but rather as individual sub tiers.

LDZ Tiers LPS Sub Tiers MPS LP2 LP5 LTS ITS LP1 LP3 LP4 LP6 Capacity Cost (£m) 98.1 33.5 100.7 48.1 49.7 41.1 61.8 102.1 88.4 3,143 Capacity Utilised (PD GWhs) 4,306 1,981 4,104 2,322 3,364 3,046 2,101 676 Unit Cost (p / pdkWh / a) 2.07 1.58 2.28 1.69 2.45 1.22 2.03 4.86 13.08

Table 5.6 Cost per Unit of Capacity Utilised

5.7 Average Cost of Utilisation

The costs calculated in Table 5.6 represent the cost per unit of capacity utilised within each pressure tier / sub tier. Charging however is based on the average expected use made of each tier of the pipeline system. The average cost, for customers in each load band, of utilising a particular pressure tier / sub tier, is calculated by multiplying the unit cost of utilising the tier by the probability that the tier is utilised by customers in the load band. This is illustrated in Table 5.7a below for the MPS.

Table 5.7a Example - Average Cost (p / pd kWh / a) of Utilisation of MPS by Load Band

Consumption Band (MWh)	Utilisation Cost	Probability of Use %	Average Cost
0-73.2	2.45	94.4%	2.32
73.2 - 146.5	2.45	94.6%	2.32
146.5 - 293	2.45	94.2%	2.31
293 - 439	2.45	94.0%	2.31
439 - 586	2.45	94.1%	2.31
586 - 732	2.45	94.6%	2.32
732 - 2,931	2.45	93.7%	2.30
2,931 - 14,654	2.45	94.3%	2.31
14,654 - 58,614	2.45	91.3%	2.24
58,614 - 293,071	2.45	78.0%	1.91
>293,071	2.45	41.1%	1.01

Table 5.7b below summarises the average cost, by consumption band, of using the complete LDZ system.

Table 5.7b Average Cost of LDZ Utilisation by Consumption Band

Consumption	Pence / peak day kWh / Annum									
Band (MWh)	LTS	IPS	MPS	LP1	LP2	LP3	LP4	LP5	LP6	Total
0 - 73.2	2.23	0.75	2.32	1.17	1.21	1.02	1.57	2.66	2.23	15.17
73.2 - 146.5	2.23	0.75	2.32	1.15	1.17	0.94	1.35	2.08	2.01	14.00
146.5 - 293	2.23	0.76	2.31	1.22	1.24	0.98	1.38	2.13	2.25	14.49
293 - 439	2.22	0.76	2.31	1.10	1.11	0.89	1.25	1.95	2.18	13.76
439 - 586	2.22	0.76	2.31	1.10	1.11	0.88	1.25	1.95	2.20	13.79
586 - 732	2.23	0.75	2.32	1.14	1.16	0.90	1.26	2.09	2.22	14.07
732 - 2,931	2.22	0.76	2.30	1.04	1.06	0.83	1.16	1.76	1.75	12.89
2,931 - 14,654	2.22	0.75	2.31	0.89	0.90	0.67	0.84	1.02	0.90	10.50
14,654 - 58,614	2.20	0.77	2.24	0.51	0.50	0.32	0.31	0.33	0.00	7.19
58,614 - 293,071	2.20	0.85	1.91	0.21	0.20	0.08	0.14	0.20	0.18	5.96
>293,071	2.22	0.83	1.01	0.02	0.03	0.02	0.03	0.05	0.13	4.33

5.8 CSEPs

It has been suggested that CSEPs may use less of the LDZ system when compared with standard supply points of the same peak daily consumption, and hence separate charging functions have been generated. CSEP specific connection data is used to compile a CSEP connection probability matrix in place of Table 5.4.

The costs calculated earlier in Table 5.6 represent the cost per unit of capacity utilised within each pressure tier / sub tier of the LDZ by all loads. CSEP charging is based on the average expected cost, in each consumption band, for a CSEP utilising a particular pressure tier / sub tier. It is calculated by multiplying the unit cost of utilising each tier (Table 5.6) by the probability that the tier is utilised by CSEPs within a consumption band (CSEP replacement table for Table 5.4). The summation of each of these tier / sub-tier costs gives a total LDZ cost as in Table 5.7b.

5.9 Setting the Charging Functions

To provide a workable basis for charging individual customers of differing sizes the total average costs of utilising each tier of the LDZ network are plotted. For the capacity charges for directly connected supply points these costs are the total costs detailed in 5.7b above. Functions are fitted to the data points such that the error term is minimised. The functions found to best fit the underlying average cost data are in the form of a power of the peak daily load (SOQ) with straight-line elements for the domestic (<73.2 MWh / annum) consumption band and the small I&C consumption band (73.2 to 732 MWh / annum). These functions must then be scaled so that when applied to all supply points connected to the transporter network they are expected to generate the desired target revenue. For CSEPs and standard supply points less than 732 MWh / annum, the functions for capacity charges are the same as are the functions for commodity charges.

6. LDZ Customer and Other Charges Methodology

Customer charges reflect supply point costs, namely costs relating to service pipes and emergency work.

6.1 Customer Charge Methodology

The customer charge methodology is based on an analysis of the extent to which service pipe and emergency service costs vary with supply point size. This analysis is used to determine the allocation of the recovery of the target revenue (based on Table 4.1 - LDZ Cost Breakdown) from supply points grouped in broad load bands. This is described in more detail below.

- 1. Using a methodology similar to that described in section 5.3 (operating costs plus an asset-based adjustment), the customer cost pool is sub-divided into the following cost pools:
 - i. service pipes
 - ii. emergency work
- 2. Each cost pool is then divided among a number of consumption bands based on weighted consumer numbers by consumption band. The consumption bands are based on the annual quantity of gas consumed. The weightings are derived from an analysis of how the costs of providing each of the services listed in 1. above vary with consumption size.
- 3. For each cost pool, an average cost per consumer is then calculated for each consumption band by dividing by the number of consumers in that consumption band.
- 4. A total average cost per consumer is then calculated for each consumption band by adding the unit costs of each service, that is service pipes and emergency work.
- 5. Finally, using regression analysis, functions are developed that best fit the relationship between consumption size and total average cost per consumer.

Charges for supply points consuming below 73,200kWh (mainly domestic) consist of just a commodity-related charge. Charges for smaller I&C supply points, consuming between 73,200 and 732,000 kWh per annum, are based on a capacity-related charge and a fixed charge which varies with meter-reading frequency. Charges for larger I&C supply points are based on a function that varies with supply point capacity.

6.2 Charging for Connected Systems (CSEPs)

The standard customer charge is not levied in respect of supply points within CSEPs. However a CSEP administration charge is levied to reflect the transporter's administration costs related to servicing these loads. The methodology for setting this charge was established in 1996 and is based on the same methodology described in 6.3 below for setting Other Charges.

6.3 Other Charges

There are other charges applied to services which are required by some shippers but not by all, for example special allocation arrangements. It is more equitable to levy specific cost reflective charges for these services on those shippers that require them. Income from these charges is included in the regulated transportation income. These charges include:-

- charges for the administration of allocation arrangements at shared supply meter points, and
- charges for the transporter supplied meter reads (Must Reads) where a shipper has been unable to provide meter readings in compliance with the Network Code.

The methodology used to calculate the appropriate level of these charges is based on an assessment of the direct costs of the ongoing activities involved in providing the services. The costs are forward looking and take into account anticipated enhancements to the methods and systems used. A percentage uplift based on the methodology described in the transporter's background paper "Charging for Specific Services - Cost Assignment Methodology" (May 1999) is added to the direct costs to cover support and sustaining costs. The latest level of the uplift was published in PD16, Section 5, (November 2002).