METER ERROR REPORT

FINAL

Reconcile?	Y
Safety Issue?	N
Thesis Report No.	·

1. EXECUTIVE SUMMARY

SITE NAME	Seabank		
LDZ	SW (Wales & West Network)		
START DATE (actual)	15 th April 2009		
LAST GOOD DATE			
END DATE	15 th April 2009		
SIZE OF ERROR (No reconciliation	1,883 SCM over registration		
required if under 0.1%)	(equivalent to 0.119%)		
ESTIMATE – Y/N?			
ROOT CAUSE	Pressure Transducer Locking Up		
ANALYSIS	HPMIS RBD data		
METER TYPE	Orifice Plate		
AUTHOR	S Western		
CHECKED BY	C Stock		

2. BACKGROUND

Gas is supplied to part of the Wales & West network at Seabank FWACV offtake. The site meter system comprises of a single Orifice meter with an isolated bypass.

During a period of 5hrs 39mins (17:29 to 23:08) on the evening of the 15th April 2009, for some undiscovered reason the pressure transducer failed. This caused the standard flow rate to be incorrectly calculated. The condition was rectified by replacement of the pressure transducer.

3. ERROR QUANTIFICATION AND IMPACT

The RBD data was reviewed before and after the pressure transducer (PT) locked up. The PT readings, 5 prior and 5 after, were averaged to estimate the actual pressure reading during the period of the PT locking up. See spreadsheet.

Using the HPMIS orifice plate design calculation (See Fig. 1a & 1b) together with the 4 minute RBD and gas composition data the volume flow at selected 4 minute periods was calculated. In each instance, the volume flows for the locked up PT and the estimated PT reading were calculated. By comparing these calculated flows over the selected periods of the PT locking up it was estimated that orifice metering system over-registered 1,882.86 scm of gas.

From HPMIS, the Dvol for Gas Day the 15th of April 2009 was 1.588354mscm so the over-registration equates to 0.1185% of Dvol. See spreadsheet.

Fig. 1a - HPMIS screen shot for flow calculation using calculated average pressure

Fig. 1b - HPMIS screen shot for flow calculation using locked pressure value

CONFIDENTIAL

Orifice Plate Meter Design (ISO5167(BS EN 1042)) and Deflection Calculations					
Site :	SEABANK OFON				Save Design
Stream :	MTA				Delete Designs
Site Design Capacity	6.3 mscmd	Design M	ode Flowrate 💌	RBD Approved Desig	n Calc Flowrate
Design Conditions			Gas Properties	Gas Density	47.1093482 kg/m³
- Site Operating Pressure		204		leentropic Index	1.326
Max 70.0000 BarG	emperature 0.	004 °C	O User Defined	Viscosity	117.1 "Doice
Pr 35,0000 BorG	ressure 51.4	140 BarA	Calculated	Calasifia Valua	39.682 M Kasar
)iff. Pressure	n Sar		Calorine Value	0.64095
Upstream Temp Correct	Calculate Gas Propertie	s		Air Density	1.22541 kg/scm
Dimensions	Certified Dime	nsions		Corrected Dimen	sions
Temp Corrected Dimension	ns Pipe Diam.	308.02	0 mm at 20.00	^D ∘c Pipe Diameter	307.982 mm
Drain Hole Correction	Orifice Diam.	192.96	1 mm at 21.00	0 °℃ Orifice Diameter	192.923 mm
Drain Hole No 🔻	Beta Ratio	0.626	5	Beta Ratio	0.626
Drain Hole Bore	mm	Plate	Expn Coeff 1.60E-	-05 /°C Pipe Expn Coe	ff 1.10E-05 /°C
Flow Rates	as Design Flow Rates —		_	Mete	r Operating Flowrate
Mass	Flow 39,	^{534.73} kg	Discharge Coeff.	0.604215 Max	6.300000 mscmd
Time Base hour Volun	ne Flow 50,	335.07 scm	Reynolds Number	3,877,799 Min	0.000000 mscmd
Ener	gy Flow 1,997,	390.09 MJ			
			View History	Plate Deflection	Comment

5. RECOMMENDATIONS AND LEARNING

HPMIS (RBD data) should be monitored to identify any such future errors. Should the error re-occur an assessment of the transmitter may be required to ensure its integrity.

REFERENCES

HPMIS

VERSION HISTORY

Version	Changes	Author	Date
Rev0	First draft	S Western	15/08/2009
Rev1	Final	S Western	24/09/2009
SW00425092009			