#### **GL** Noble Denton



# Aberdeen SMER SC006

20<sup>th</sup> August 2013



www.gl-nobledenton.com

# Overview

- Background
- Error Description
  - Analysis of flow data
- Initial Tests
- Carrier Checks
- Carrier Data Plates
- Orifice Plate Photographs
- On-site Testing
- CFD Analysis
- Results
- Summary of Error Periods

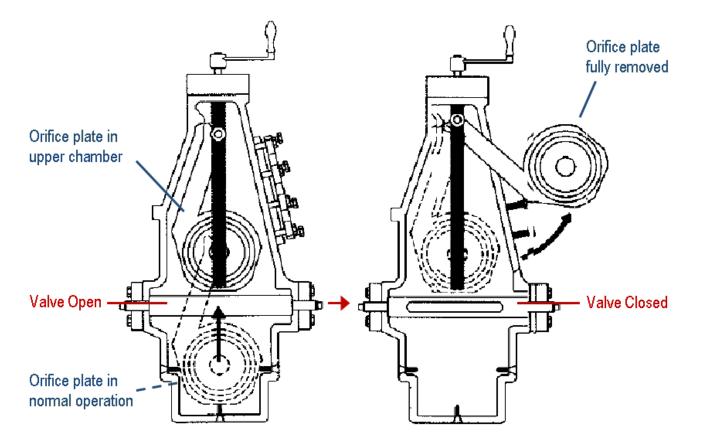


## Background

- Orifice plate meters are used to accurately measure mass flow rate
  - The orifice plate creates a pressure drop ( $\Delta p$ ) related to flow rate ( $q_m$ )

$$q_m = \frac{C}{\sqrt{1-\beta^4}} \varepsilon \frac{\pi}{4} d^2 \sqrt{2\Delta p \rho_1}$$

- This calculation is carried out within a dedicated flow computer algorithm
  - In accordance with ISO 5167-1:1991
- It assumes that the plate is located concentrically within the pipe
- If the plate is located eccentrically then the equation is not valid
  - Tolerance in this case is 0.5 mm
  - (or up to 1.0 mm with 0.3% additional uncertainty)
  - Some further guidance exists up to 12.8 mm eccentricity




# Background

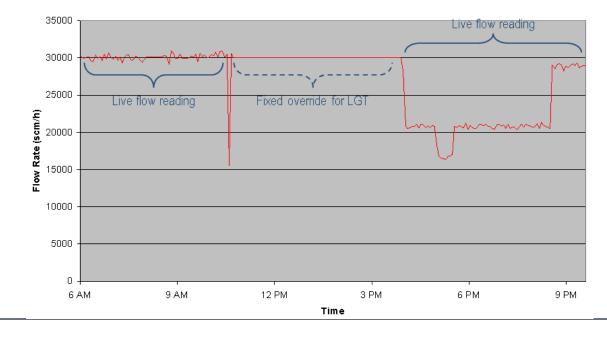
- The orifice plate is typically placed inside a carrier mechanism
  - To enable accurate location of the orifice plate within the pipe
- This carrier is designed to allow maintenance on the orifice plate without venting the metering pipe work
  - Two chambers separated by a valve
- This carrier is unusual in design because the valve is open during service



#### Background





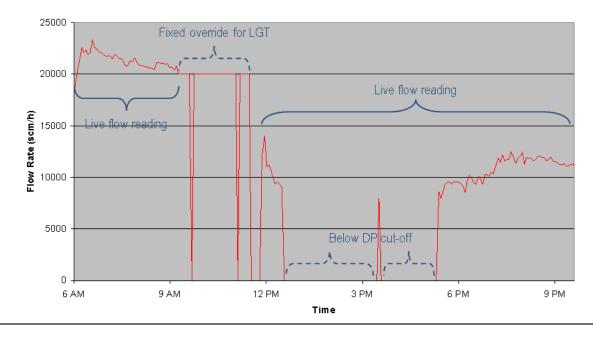

- 7<sup>th</sup> August 2010 Fault logged
  - 'Possible metering issues' following line pack calculations
- 10<sup>th</sup> August 2010 Advised that the orifice plate was not set correctly
  - DP of 54 mbar was showing as 6 mbar
  - Flow of 1.42 Mscm/d was shown as 0.5 Mscm/d
- Subsequent interviews with mechanical operatives provided some confidence that the counter was set at 99950 following the orifice plate change on 27<sup>th</sup> July 2010
- Unable to confirm counter reading at start of orifice plate change on 27<sup>th</sup> July 2010
- Unable to confirm counter reading at orifice plate change on 21st July 2009



- Site controlled to flow rate set point and pressure overrides
- During normal orifice plate changes the flow control valve is set to direct valve control to prevent movement of the valve due to spurious signals
- On 21<sup>st</sup> July 2009 and 10<sup>th</sup> August 2010 a step change in flow rate can be seen
- On 27<sup>th</sup> July 2010 the flow rate was transient
  - Flow rate was not maintained because of minimal pressure differential across the site
- On 5<sup>th</sup> August 2008 there was no change in flow rate



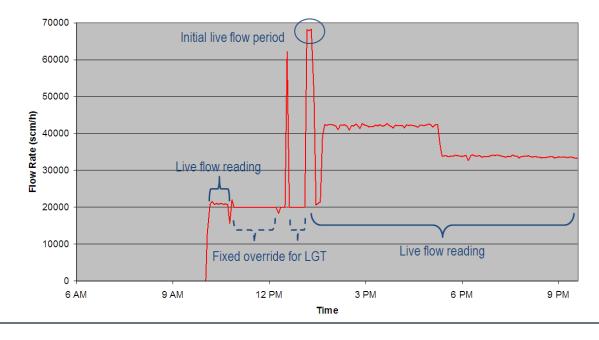
- 21<sup>st</sup> July 2009 Problem was introduced at orifice plate change
  - ~30 kscm/h site flow prior to plate change
  - ~21 kscm/h site flow following plate change
  - Indicates an under-registration of 31 % following change




Flow Profile 21st July 2009



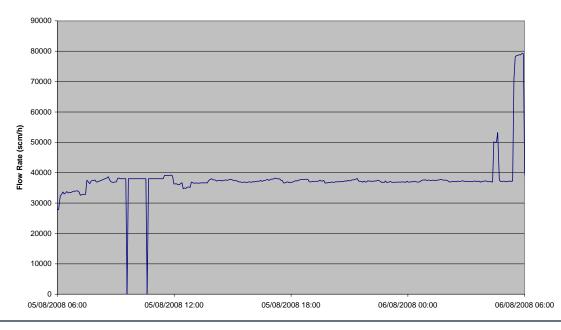
**GL** Noble Denton


- 27<sup>th</sup> July 2010 Orifice plate was changed
  - Transient flow rate before and after plate change
  - No direct comparison available
  - DP was close to the low cut-off and some zero flow rates were recorded



Flow Profile 27th July 2010



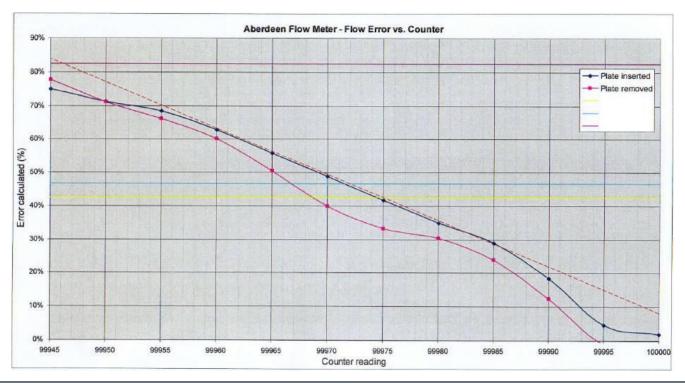

- 10<sup>th</sup> August 2010 Fault corrected
  - ~21 kscm/h site flow prior to correction
  - ~68 kscm/h site flow following correction
  - Indicates an under-registration of 69 % before correction



Flow Profile 10th August 2010



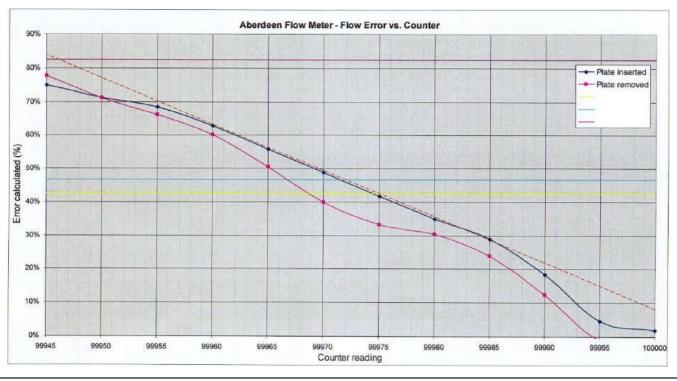
- 5<sup>th</sup> August 2008 Correct orifice plate change
  - ~38 kscm/h site flow prior to plate change
  - Fixed flow (38 kscm/h) recorded for duration of plate change
  - ~38 kscm/h site flow following plate change




Flow Profile 5th August 2008



## **Initial Tests**


- Initial tests were carried out by downstream party to estimate error magnitude
  - Prior to appointment of ITE
  - Not suitable as quantification of error





## **Initial Tests**

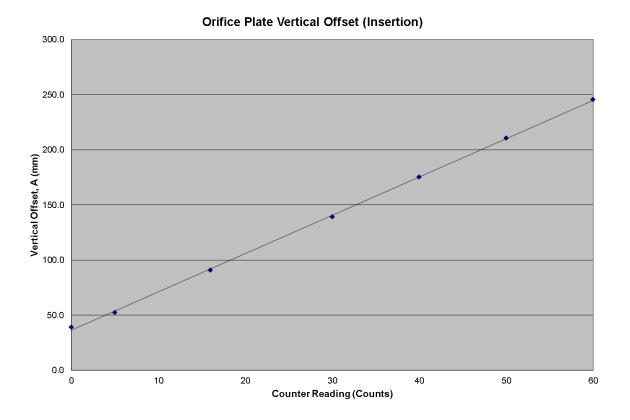
- Error at 99950 counter reading shown as 71%
  - Compares well with 69% estimated from step change
- Step change of 31% suggests that the unknown counter reading is ~99984





- Aimed to determine the relationship between the counter reading and the physical location of the plate within the pipe
- Downstream spool removed
- Vertical and horizontal offsets measured
  - Using slip gauges
  - At various counter readings on removal and insertion




- 00000 Correct location (top right)
- 99950 Correct location (bottom right)
  - Offset of 173.0 mm
- 99984 Correct location (bottom left)
  - Offset of 51.3 mm







• Linear profile





- Average of three readings
- 99950 No difference in readings
- 99984 Standard deviation less than half of the measurement uncertainty
- Good repeatability

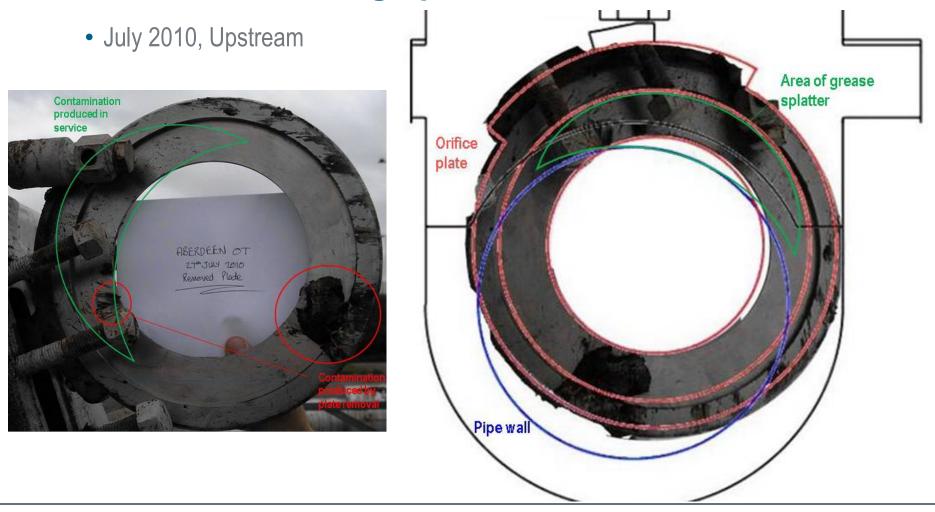


## **Carrier Data Plates**

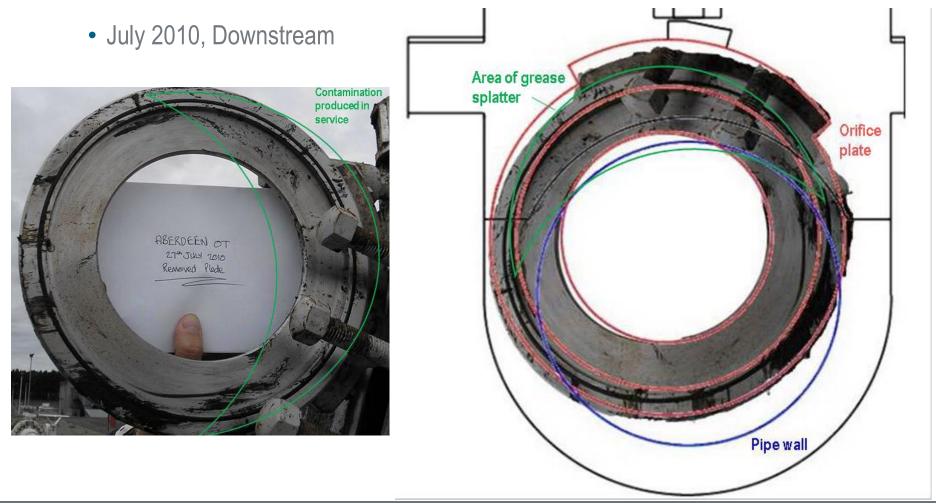
- Identification plate
  - Serial number and carrier specification
- Information plate
  - Step by step Instructions on removal and insertion of orifice plate
  - Not easily readable






## **Carrier Data Plates**

- The information plate states that the fully inserted position should be at a counter reading of between 9995 and 0005
  - Five digit counter
  - Fully inserted position is exactly 00000
- From this it can be seen that the four digit 9995 counter reading was likely to have been misinterpreted as a five digit reading of 99950
- No evidence to support a counter reading of 99984 (estimated from initial analysis)
- However it was thought that the 99885 which is stamped in two locations on the carrier information plate could have been misread as 99985

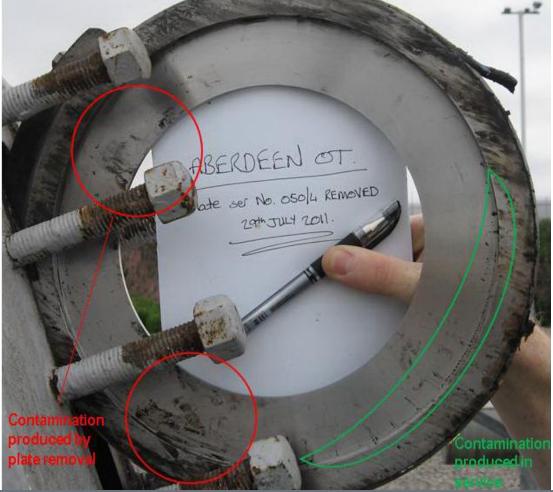



- Photographic records are kept of each plate (both faces) on insertion and removal
- Plate removed on 21st July 2009 was clean
- Plate removed on 27<sup>th</sup> July 2010 showed some contamination
  - Location supports 99985 counter reading
- Plate removed on 29<sup>th</sup> July 2011 showed some contamination
  - Pattern consistent with normal flow conditions
  - No significant effect based on quantity and location












- The splatter pattern suggests small amounts of grease being picked up and deposited by a flow of gas
- Contamination of this kind would be removed by the flow of gas under normal operating conditions (higher flow rates), particularly around the bore edge
- This is an indication that normal gas flows were not experienced by this part of the orifice plate



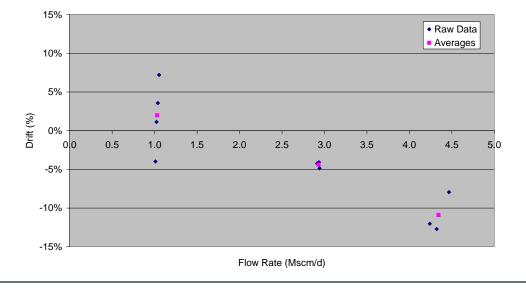
- July 2011, Upstream
- Typical of minor contamination experienced in service
- Confined to outer annulus
- Streaking radially outwards





- Aim to establish the relationship between DP and the counter reading at various flow rates and pressures
- Designed to cover the true range experienced during the error period
- Pressure 54.8 barg to 66.5 barg
- Site maximum flow 4.5 Mscm/d
- Minimum flow rate 1.0 Mscm/d
  - Selected because of high uncertainties at lower flow rates

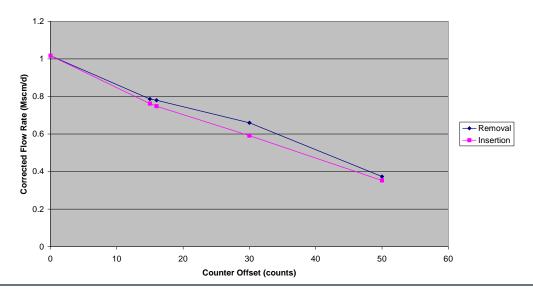



- Problems achieving desired pressures in upstream National Transmission System
- 15<sup>th</sup> February 2012 the pressure was between 61.4 barg and 62.1 barg
  - Selected as intermediate pressure point
- Aimed to test at 66 barg and 55 barg
  - It was suggested that 57 barg was a more achievable target
- 18<sup>th</sup> April 2012 the pressure was between 63.6 barg and 64.0 barg
  - Selected as high pressure point
- 19<sup>th</sup> April 2012 the pressure was between 58.1 barg and 58.7 barg
  - Selected as low pressure point
- Pressure range was deemed to be acceptable as it covered >85% of the data
  - Later shown to be insensitive to pressure



- Pressure maintained by upstream party
- Set flow control valve in direct valve control to fix flow rate
- Positioned plate at various counter readings (removal and insertion)
- Logged process data (DP, erroneous flow rate, etc)
- Repeated for 3 different flow rates at 3 different pressures
- Some instability in flow rate and pressure (pre- and post-check)




- Flow rate drift was caused by mis-match between the supplied flow rate and the downstream demand (~2 Mscm/d)
- This was most prevalent at the highest flow rates (i.e. where the difference between supply and demand was at it's the greatest)
- Assumed to be linear over the duration of each test

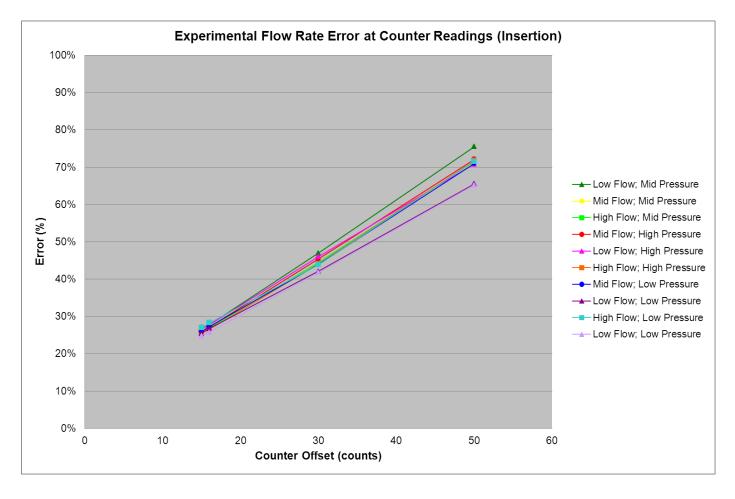


Graph of Drift against Flow Rate



- At each point there was a slight difference in results between removal and insertion due to the difference in direction of the horizontal offset
  - Plate moves towards the differential pressure tapping points on removal and away from them on insertion
- Results in slightly higher flow rates on removal




#### **Typical Flow Profile of Tests**



- Assumed that orifice plate was inserted to the counter reading, rather than inserted fully and then removed back out to the counter reading.
- It cannot be known for sure, but is more plausible and much more likely



#### **Results - Experimental**



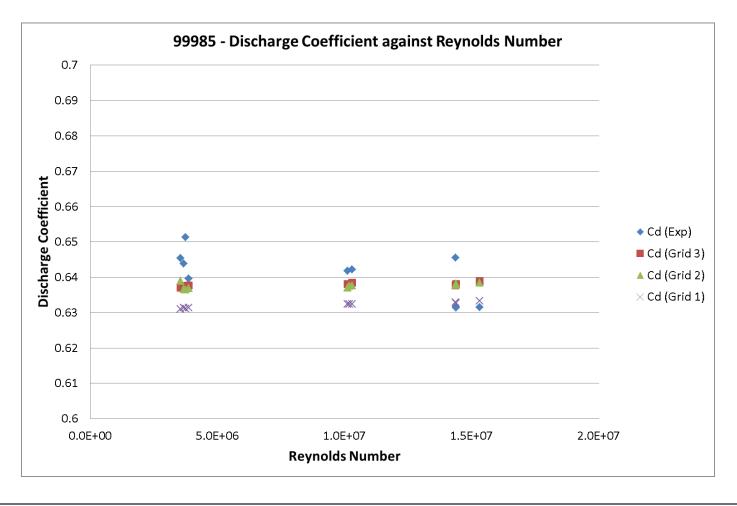


**GL** Noble Denton

# **CFD Analysis**

- No guidance or research for such severe misalignment
- Validation of model
  - Validated against correctly located operating and experimental data
  - Validated against 99970 incorrectly located data
- Results produced for 99985 and 99950 counter readings
  - Experimental DP results not supplied until CFD results were completed
- Recommendations of peer review of analysis report
  - Shorter model (shown to be less accurate)
  - Grid independence checks (completed)
  - 0.1 mm resolution around orifice edge (resolution increased but recommendation not met)
  - Additional reporting requirements (completed)

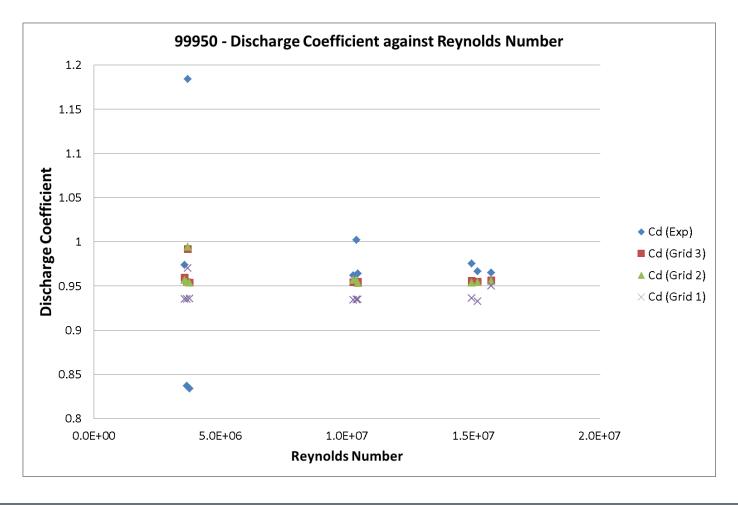



# **CFD** Analysis

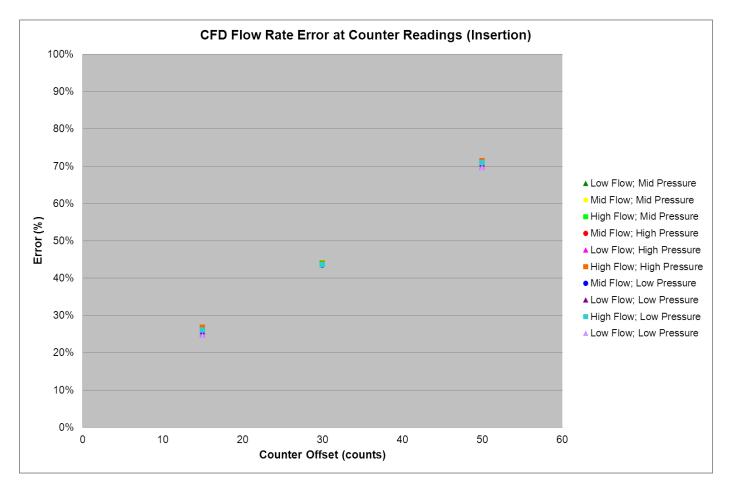
- Comparison of CFD and experimental results
  - DP measurement uncertainty used as acceptable tolerance
  - Grid independence considered acceptable under 1%
- 99985 counter reading
  - 7/10 within DP measurement uncertainty
  - Other three were up to 2.5% (vs. 1%)
  - All grid independent (< 0.5%)
- 99950 counter reading
  - 6/10 within DP measurement uncertainty
  - Two others on limit of tolerance (42% vs. 40% and 2.6% vs. 2.5%)
  - Other two were 10% and 4.2% (vs. 6% and 2.5%)
  - All grid independent (< 0.7%)
- All results show error to be independent of process conditions



| Test | Actual Flow<br>Rate (m <sup>3</sup> /h) | Experimental<br>DP (mbar) | CFD DP (mbar) | Error (%) | DP Measurement<br>Uncertainty (%) |
|------|-----------------------------------------|---------------------------|---------------|-----------|-----------------------------------|
| 1    | 594.4561                                | 13.78                     | 14.40         | -4.5 %    | 5.0 %                             |
| 2    | 1598.6628                               | 103.14                    | 104.36        | -1.2 %    | 2.0 %                             |
| 3    | 2396.1463                               | 242.94                    | 237.43        | 2.3 %     | 1.0 %                             |
| 4    | 1540.5865                               | 102.49                    | 102.43        | 0.1 %     | 2.0 %                             |
| 6    | 534.9225                                | 12.06                     | 12.38         | -2.7 %    | 6.0 %                             |
| 7    | 2174.3146                               | 208.33                    | 203.99        | 2.1 %     | 1.0 %                             |
| 8    | 1729.112                                | 112.57                    | 113.87        | -1.2 %    | 1.5%                              |
| 9    | 609.996                                 | 14.07                     | 14.35         | -2.0 %    | 5.0 %                             |
| 10   | 2415.2228                               | 217.58                    | 223.02        | -2.5 %    | 1.0 %                             |
| 11   | 648.0378                                | 15.98                     | 16.08         | -0.6 %    | 4.5 %                             |

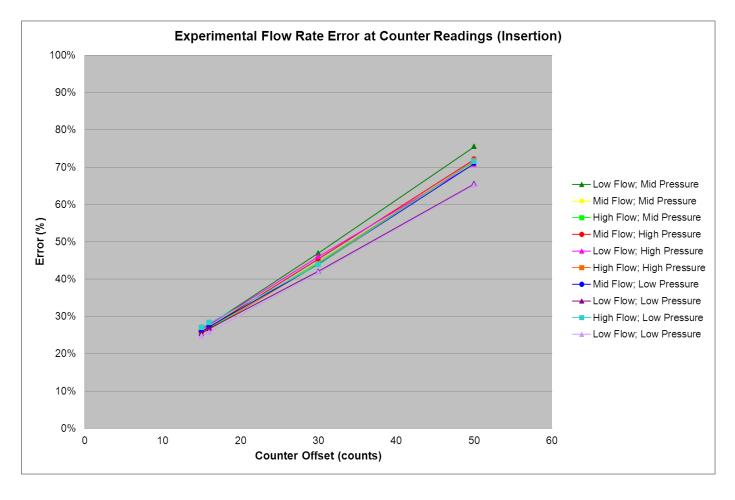




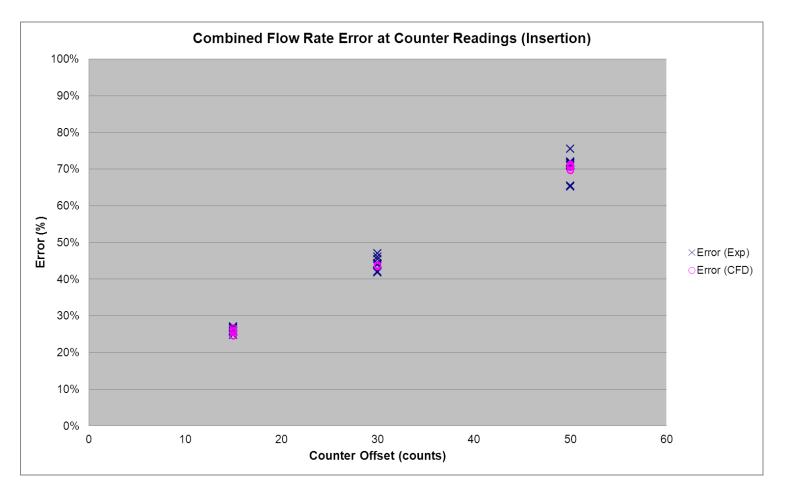

| Test | Actual Flow<br>Rate (m <sup>3</sup> /h) | Experimental<br>DP (mbar) | CFD DP (mbar) | Error (%) | DP Measurement<br>Uncertainty (%) |
|------|-----------------------------------------|---------------------------|---------------|-----------|-----------------------------------|
| 1    | 588.60                                  | 1.40                      | 1.99          | -42 %     | ±40 %                             |
| 2    | 1619.6945                               | 16.07                     | 16.32         | -1.6 %    | ±5 %                              |
| 3    | 2459.8613                               | 37.29                     | 37.98         | -1.9 %    | ±2.5 %                            |
| 4    | 1564.3494                               | 14.61                     | 16.09         | -10 %     | ±6 %                              |
| 6    | 541.2844                                | 1.85                      | 1.91          | -3.2 %    | ±40 %                             |
| 7    | 2284.8572                               | 33.42                     | 34.28         | -2.6 %    | ±2.5 %                            |
| 8    | 1748.498                                | 17.43                     | 17.77         | -2.0 %    | ±4 %                              |
| 9    | 608.80                                  | 2.83                      | 2.18          | 23 %      | ±30 %                             |
| 10   | 2506.863                                | 34.96                     | 36.43         | -4.2 %    | ±2.5 %                            |
| 11   | 633.819                                 | 3.07                      | 2.35          | 23 %      | ±30 %                             |










#### **Results - Experimental**



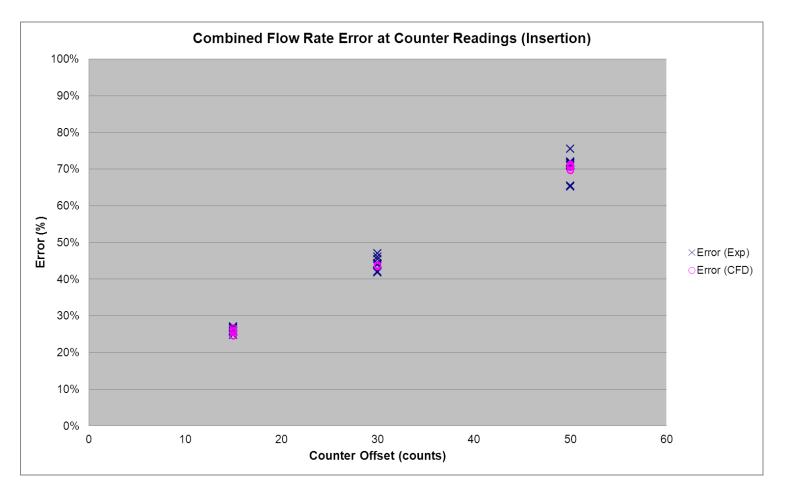


**GL** Noble Denton

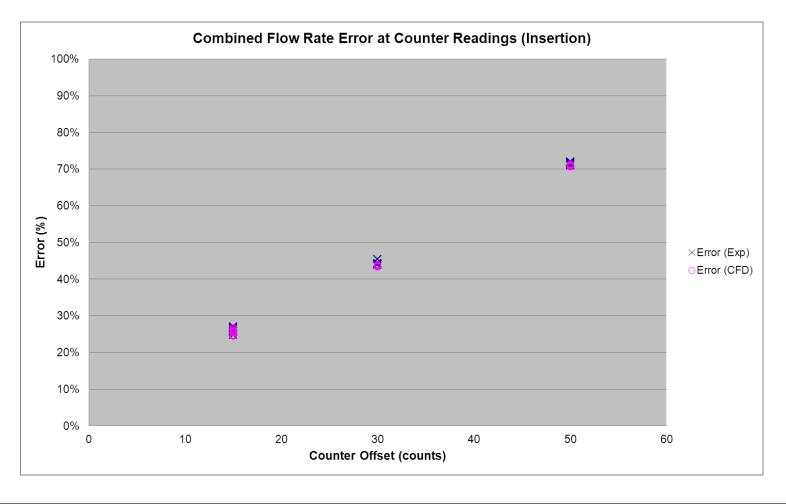




| Counter<br>Reading | Experimental Error (%) |           | CFD Error (%) |              | Difference in Mean<br>(% relative) |
|--------------------|------------------------|-----------|---------------|--------------|------------------------------------|
|                    | Mean                   | Std. Dev. | Mean          | Std.<br>Dev. |                                    |
| 99985              | 26.1 %                 | 0.7 %     | 25.7 %        | 0.7 %        | -1.4 %                             |
| 99950              | 70.6 %                 | 3.1 %     | 70.6 %        | 0.6 %        | 0.0 %                              |


- High standard deviations at low DPs
  - Expected with higher uncertainty of DP measurement




| Counter<br>Reading | Experimental Error (%) |           | CFD Error (%) |              | Difference in Mean<br>(% relative) |
|--------------------|------------------------|-----------|---------------|--------------|------------------------------------|
|                    | Mean                   | Std. Dev. | Mean          | Std.<br>Dev. |                                    |
| 99950              | 70.6 %                 | 3.1 %     | 70.6 %        | 0.6 %        | 0.0 %                              |
| (AII)              |                        |           |               |              |                                    |
| 99950              | 71.5 %                 | 0.4 %     | 71.0 %        | 0.3 %        | -0.7 %                             |
| (>10 mbar)         |                        |           |               |              |                                    |

- Excluding DPs below 10 mbar significantly reduces standard deviation
  - Demonstrates that the two data sets are more reliable above 10 mbar











# **Summary of First Error Period**

- 21<sup>st</sup> July 2009 to 27<sup>th</sup> July 2010
- Counter reading of 99985 based on
  - ~31% step change in flow rate when the plate was inserted
  - 99885 values stamped on the carrier information plate
  - Pattern of contamination compared to physical measurements
- Mean error from on-site testing is 26.1 % (under-registration)
  - Standard deviation of 0.7 %
  - Supported by CFD (Mean 25.7 %; Standard deviation 0.7 %)
- Error is independent of process conditions
  - Single correction factor for period (1.353066)



# **Summary of Second Error Period**

- 27<sup>th</sup> July 2010 to 10<sup>th</sup> August 2010
- Counter reading of 99950 based on
  - ~69% step change in flow rate when the plate location was corrected
  - 9995 value stamped on the carrier information plate
  - Interviews with mechanical operatives
- Mean error from on-site testing is 71.5 % (under-registration)
  - Standard deviation of 0.4 %
  - Supported by CFD (Mean 71.0 %; Standard deviation 0.3 %)
- Error is independent of process conditions
  - Single correction factor for period (3.506731)



#### **GL** Noble Denton





#### Thank you. Any Questions?

ben.kirkman@gl-group.com

www.gl-nobledenton.com