Review of the Determination of Daily Calorific Values

Phil Hobbins

Distribution Workstream, 26th March 2009

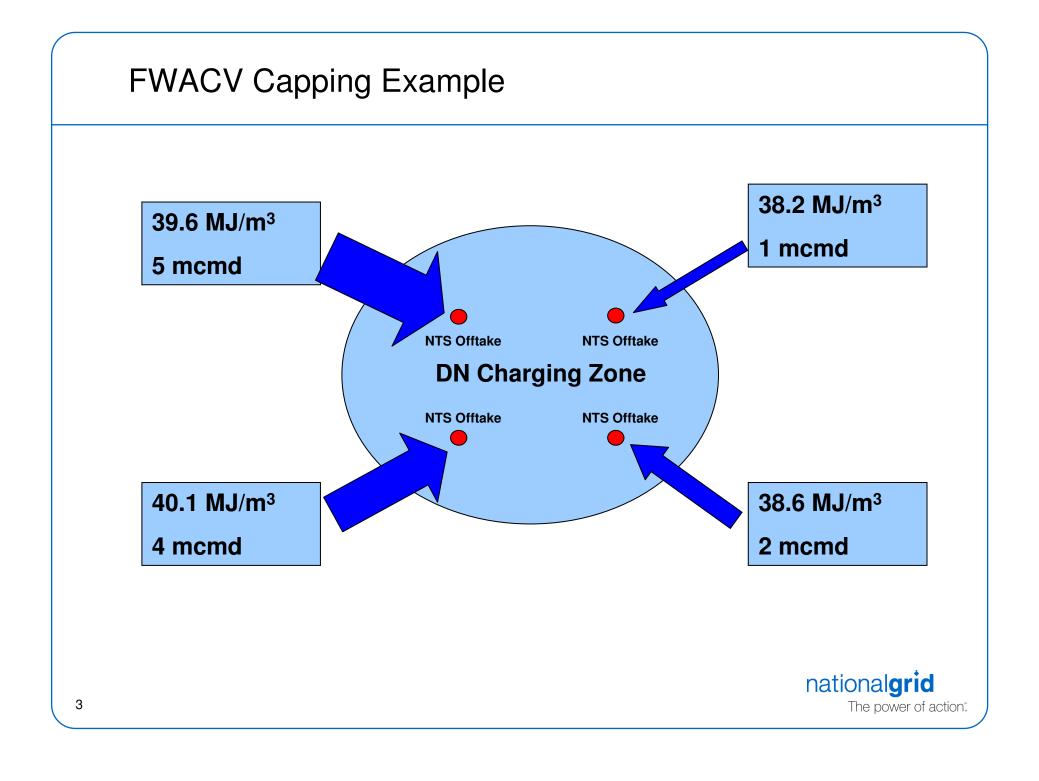
Background

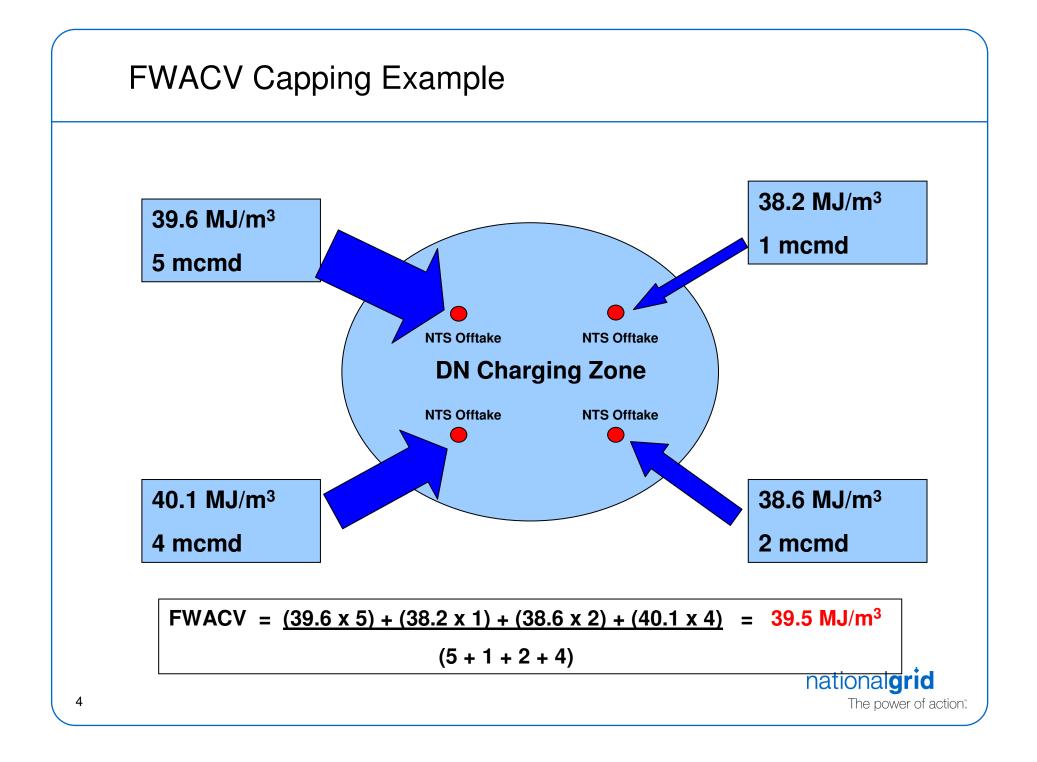
Calorific Value (CV) is a measure of the energy contained within a volume of gas

How are applicable daily CVs determined?

- NTS System Exit Points site specific measurement
- DN System Exit Points Flow Weighted Average CV (FWACV) methodology

Calculated within each charging zone in accordance with the Gas (Calculation of Thermal Energy) Regulations 1996 as the lowest of:


- FWACV across all inputs to the DN charging zone
- Lowest average CV at any single input to the DN charging zone, plus 1MJ/m³


Protects consumers by effectively capping billable CV at a maximum of 1MJ/m³ above the lowest source of energy into a charging zone

Measured energy - billable energy = unbilled energy (CV shrinkage)

NTS SO procures CV shrinkage

FWACV Capping Example

FWACV Energy = ((39.5 MJ/m³x 5 mcmd) + (39.5 MJ/m³x 1 mcmd) + (39.5 MJ/m³x 2 mcmd) + (39.5 MJ/m³x 4 mcmd))/3.6 = 131,666,667 kWh

Lowest source daily $CV = 38.2 \text{ MJ/m}^3$

Applicable cap = 39.2 MJ/m^3 Billable Energy = (($39.2 \text{ MJ/m}^3 \text{x 5 mcmd}$) + ($39.2 \text{ MJ/m}^3 \text{x 1 mcmd}$) + ($39.2 \text{ MJ/m}^3 \text{x 1 mcmd}$) + ($39.2 \text{ MJ/m}^3 \text{x 4 mcmd}$))/3.6 = 130,666,667 kWh

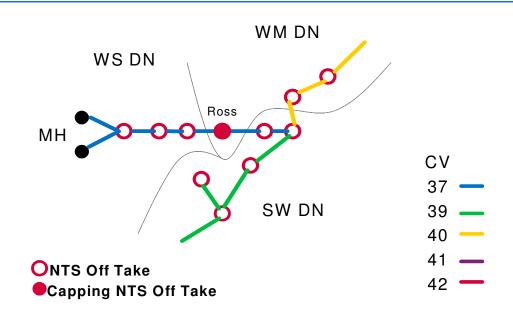
Unbilled Energy (CV Shrinkage) = 1,000,000 kWh

Why the Review?

Potential drivers for increased CV variances in the future

1) Increasing diversity of UK supplies:

• LNG Importation, marginal UKCS fields, biogas, coal-bed methane, etc.


2) Changing network topology:

- Historically, UKCS gas flowed North to South, East to West
- New world has major supplies in the South (Milford Haven, Grain LNG, etc.)

We believe there is increased potential to trigger CV capping, thereby generating higher levels of unbilled energy

Milford Haven Low CV Scenario

Up to 707 GWh per annum of CV shrinkage could result from this scenario*

@30p/therm = £7.2M cost of gas procurement per annum

CV shrinkage costs are shared between shippers and NG NTS (SO incentive) However, where the NTS SO has no mitigating tools,* shippers would fund 100%

The power of action."

www.nationalgrid.com/uk/Gas/soincentives/archive/National Grid Gas and Electricity System Operator Incentives Initial Proposals Consultation, 7th Dec 2007, p53-56.

Regulatory Context

National Grid NTS first contemplated a review of the FWACV rules in December 2007*

Ofgem, BERR and others have subsequently indicated their support for a review of the FWACV regime**

Ofgem recently urged National Grid NTS, DNOs and shippers to progress this review***

* www.nationalgrid.com/uk/Gas/soincentives/archive/National Grid Gas and Electricity System Operator Incentives Initial Proposals Consultation, 7th Dec 2007, p.55

** www.nationalgrid.com/uk/Gas/soincentives/docs/NGG (NTS) - Consultation on Shrinkage and Residual Balancing Incentive Issues, 22nd August 2008, p.51 and <u>www.ofgem.gov.uk/CustomPages/Pages/ArchivedPublications.aspx</u>, NGET and NGG System Operator Incentives from 1 April 2009, 27th February 2009, p.35.

*** www.gasgovernance.com/Code/Modifications/ClosedMods/CM231-240, Modification Proposal 0236, "Amendment to Px (TGPP) Limited Network Entry Agreement", Ofgem decision letter, 27th January 2009, p.4

Review of CV Calculation Methodology

We propose setting up a UNC Review Group to:

- Review the existing arrangements
- Identify tenable future supply scenarios
- Consider the issues which impact the accuracy of actual energy delivered vs. energy billed
- Develop potential solutions and potentially propose methodology changes

UNC Review Proposal and draft Terms of Reference to April Modification Panel

Review Group to report in Autumn 2009

