Carbon Cost Assessment

At present, gas with high levels of CO_2 concentration flows from offshore fields and under normal circumstances is blended in the FUKA pipeline with gas of lower CO_2 concentration feeding into the pipeline from other fields such that the combined commingled flow of gas exiting the St Fergus terminal and entering the NTS meets the current NTS entry specification for CO_2 at 4 mol%. Therefore, the tonnage of CO_2 associated with gas with high levels of CO_2 concentration already flows into the NTS albeit in a diluted form.

The options for addressing the possible increases in CO_2 levels in export gas during periods when dilution in the FUKA pipeline is unavailable or reduced are to either allow such gas to flow directly into the NTS up to an agreed level (5.5 mol%) or to remove the excess CO_2 above the current allowable specification (4.0 mol %) using CO_2 removal technology.

Modification ¹0498 and 0502 considered the following three scenarios which are relevant to this modification request:

- 1. Non removal of CO₂
- 2. Removal Offshore
- 3. Removal Onshore

The removal technology in this scenario remains the same as that considered in Modification 0498/ 0502 and the significant cost (c. £200m) and long lead time (c. 3 years) associated with the brownfield engineering modifications required for options 2 and 3, all of which remain unchanged from 0498/0502 renders these options non-viable for use here on an ad-hoc basis. In addition, the key conclusion of the Teesside carbon cost assessment is that significantly more CO₂ is emitted by removing CO₂ from the gas due to the fact that CO₂ removal using amine units, the optimal technology for CO₂ extraction given the CO₂ concentration, requires process heat which generates additional CO₂. The magnitude of expected CO₂ emissions here is similar to the Teesside modification and when the fact that the CO₂ would already flow to the NTS is taken into account, the conclusion from the Teesside report that the least impact in terms of overall CO₂ emissions is to allow the gas with high CO₂ to flow into the NTS is also valid for the proposed St Fergus modification.

^{1.} Final Modification Report 0498: Amendment to Gas Quality NTS Entry Specification at BP Teesside System Entry Point and 0502: Amendment to Gas Quality NTS Entry Specification at the px Teesside System Entry Point