

Exit Capacity Substitution

A Guide to the Exit Capacity Substitution Methodology

Introduction

- This presentation provides a brief overview of the steps to be undertaken to determine the vulnerability of unbooked exit capacity, at specific Exit points, to being substituted to other Exit Points
- Exit Capacity Substitution is a Licence obligation placed on National Grid Gas Transmission (NGT) aimed at avoiding unnecessary investment. Proposed capacity substitutions are subject to approval by Ofgem
 - It works by moving the Exit Capacity release obligation from where it is not wanted (i.e. it is unsold) to where it is needed (incremental capacity signal)

The only way to ensure that capacity is not substituted to another Exit Point is to buy it

01

Incremental Capacity and Scenario Planning

rence condition ur

C Gassco FLOW

Coventry weather foreca X

C

① meteoradar.co.uk/verwacht

Incremental Capacity and Scenario Planning

- Using market intelligence identify quantity and location of likely capacity increase requests.
- Using market intelligence identify quantity and location of likely capacity decrease requests.
- Using the Long Term Summary Report, identify where Incremental Obligated Exit Capacity release is likely to be triggered.

Recipient Exit Point Order

erence condition units

C Gassco FLOW

Coventry weather foreca X

C

meteoradar.co.uk/verwacht

Recipient Exit Point Order

 The Exit Capacity Substitution Methodology defines a merit order for determining which incremental exit capacity request should be considered for substitution. This order is irrelevant to the effect on potential donor Exit Points.

Potential Donor Exit Points

Potential Donor Exit Points

- Potential donor Exit Points are those with Substitutable Capacity.
- For the scenario in question, and using the Long Term Summary Report, Exit Points with Substitutable Capacity should be identified.
- Dependant upon the specific scenario, analysis to find potential donor Exit Points can be limited to a few Exit Points downstream of the recipient.

Long Term Summary Report

1	A	D	L L	U	E	Г	6	п
	Exit Point Licence Name	Location name on Gemini Exit	Month	Units 💌	Jan-19 💌	Feb-19 💌	Mar-19 💌	Apr-
6			Baseline Obligation (BFLEC)	kWh/d	1,790,000	1,790,000	1,790,000	1,79
7			Incremental Obligation (IFLEC)	kWh/d	0	0	0	
8			Non-Obligated Released	kWh/d	0	0	0	
9	Lauderhill	LAUDERHILLOT	Total Monthly Release Obligation	kWh/d	1,790,000	1,790,000	1,790,000	1,79
0			Quantity Reserved	kWh/d	0	0	0	
1			Total Quantity Sold	kWh/d	0	0	0	
2			Quantity Unsold	kWh/d	1,790,000	1,790,000	1,790,000	1,79
3	Leamington	LEAMINGTONOT	Baseline Obligation (BFLEC)	kWh/d	4,260,000	4,260,000	4,260,000	4,26
4			Incremental Obligation (IFLEC)	kWh/d	0	0	0	
5			Non-Obligated Released	kWh/d	0	0	0	
6			Total Monthly Release Obligation	kWh/d	4,260,000	4,260,000	4,260,000	4,26
7			Quantity Reserved	kWh/d	0	0	0	
8			Total Quantity Sold	kWh/d	3,634,748	3,634,748	3,634,748	3,63
9			Quantity Unsold	kWh/d	625,252	625,252	625,252	62
0	Little Burdon	LTBURDONOT	Baseline Obligation (BFLEC)	kWh/d	17,750,000	17,750,000	17,750,000	18,65
1			Incremental Obligation (IFLEC)	kWh/d	3,169,521	3,169,521	3,169,521	2,26
2			Non-Obligated Released	kWh/d	0	0	0	
3			Total Monthly Release Obligation	kWh/d	20,919,521	20,919,521	20,919,521	20,91
4			Quantity Reserved	kWh/d	0	0	0	
5			Total Quantity Sold	kWh/d	20,919,521	20,919,521	20,919,521	20,91
C	1		Quantity Unsald	IAMb/a	0	0	0	

• Learnington. Substitutable capacity = Quantity Unsold.

National Grid

Ranking of Donor Exit Points

erence condition units

Gassco FLOW

Coventry weather foreca X

C

meteoradar.co.uk/verwacht

Ranking of Donor Exit Points

- The order in which potential Exit donor points are selected is documented in the Exit Capacity Substitution Methodology.
 - Essentially furthest downstream, working upstream.
- The order should be reconfirmed after each donor Exit point has been confirmed.
 - E.g. substituting capacity from C to A may mean B is no longer downstream of A
- The order should be reconfirmed after substitution for each recipient Exit point, in the scenario being considered, has been confirmed.
 - Accepted substitutions for recipient A1 should be modelled for analysis for recipient A2

05

Enhanced Network

erence condition unit

C Gassco FLOW

Coventry weather foreca X

C

① meteoradar.co.uk/verwacht

Enhanced Network

- We know that the current Network cannot cope if all Exit demands simultaneously take gas at obligated levels. Assured Pressures will not be met.
- As potential Exit donor points are raised to obligated levels for substitution analysis, the Network is reinforced to accommodate those obligations.
- The resultant model is known as the Enhanced Network.
- The Enhanced Network is built up from the current Network using the Principals of the Transmission Planning Code, and existing pressure and capacity obligations.

Enhanced Network

- As Entry supplies cannot satisfy all existing Entry obligations, the Enhanced Network is developed for the 'area' around the recipient Exit point.
 - This may require repeating for individual recipient Exit points.
 - The 'area' is the part of the Network that has a high degree of interactivity with the recipient Exit points, and includes all potential donor Exit points
- The order should be reconfirmed after substitution for each recipient Exit point, in the scenario being considered, has been confirmed.
 - Accepted substitutions for recipient A1 should be modelled for analysis for recipient A2

06

Substitution Analysis

erence condition unit

Gassco FLOW

Coventry weather foreca X

C

① meteoradar.co.uk/verwacht

Substitution Analysis

- Using the Enhanced Network.
 - Set flows at the recipient and interactive Exit points to the (pre increase) obligated level.
 - Elsewhere set the relevant demand level, but not less than sold.
 - Balance at the least interactive Entry point
 - Move demand from potential donor Exit points to the Recipient Exit point.
- The less demand you need to move the better the Exchange rate.
- If the Exchange rate is greater than 3:1 the donor Exit point is not considered for substitution.
- The order for eventual substitution is determined by the best Exchange rate.