UNC Modification

At what stage is this document in the process?

UNC 0728A (Urgent):

02 Workgroup Report

Modification

03 Draft Modification Report

04 Final Modification Report

Introduction of Conditional Discounts for Avoiding Inefficient Bypass of the NTS

Purpose of Modification:

The revised NTS Charging Methodology (in place from 01 October 2020) does not incorporate a mechanism to dis-incentivise inefficient bypass of the NTS.

This Modification seeks to introduce a new Conditional Discount to the Charging Framework so that a product to manage potential inefficient bypass will be in place as soon as possible on or after the changes introduced from UNC0678A, which becomes effective from 01 October 2020.

The Proposer recommends that this modification should be:

 treated as an Alternative to Modification 0728 and should proceed under the same timetable as that agreed with the Authority for Modification 0728 as far as practicable.

High Impact:

All parties that pay NTS Transportation Charges and / or have a connection to the NTS, and National Grid NTS.

Medium Impact:

N/A

Low Impact:

N/A

Contents Any questions? 1 3 Summary Contact: Joint Office of Gas 2 Governance 4 **Transporters** 3 Why Change? 5 **Code Specific Matters** 16 enquiries@gasgove rnance.co.uk 5 Solution 16 **Impacts & Other Considerations** 27 0121 288 2107 7 **Relevant Objectives** 29 Proposer: Adam Bates, South **32** 8 **Implementation Hook Gas Company** Ltd 32 9 **Legal Text** 10 Recommendations 32 Abates@southhook 11 Appendix - Analysis 33 gas.com 12 Appendix 3 – Comparison of Modifications 0728/A/B/C/D 51 07787 524566 Transporter: Timetable **National Grid NTS** The Proposer recommends the following timetable: 09 June 2020 Modification sent to Ofgem colin.williams@nati onalgrid.com Ofgem Decision on Urgency 12 June 2020 Draft Modification Report issued for consultation 15 June 2020 01926 655916 Consultation Close-out for representations 26 June 2020 or 07785 451776 Final Modification Report available for Panel 02 July 2020 Systems Provider: Modification Panel recommendation 03 July 2020 Xoserve 03 July 2020 Final Modification Report issued to Ofgem 20 Proposed Implementation date (subject to Ofgem's decision) 01 October 2020 commercial.enquiri es@xoserve.com Other **Nick Wye** nick@waterswye.co <u>.uk</u> 07900 055144

Version 2.0

12 June 2020

1 Summary

What

The revised NTS Charging Methodology (the 'revised Methodology') which takes effect from 01 October 2020 does not include a bespoke provision for directly connected NTS Users located at, or near Entry Points, where construction of a pipeline to bypass the NTS may be a viable commercial option.

This Modification seeks to implement a more cost reflective charging arrangement for such points when compared with the charges which would be generated via the new Capacity Charging Methodology.

This Modification takes into account the Impact Assessment and the decision Ofgem has made regarding Modification 0678¹ and its Alternatives, published on 23 December 2019 and addresses the areas of compliance identified in this decision to ensure compliance with EU Tariff Code (Regulation 2017/460)².

This Proposal, and the justification for Urgency, is based on the revised Methodology which takes effect from 01 October 2020.

Why

The revised Methodology aligns the overall GB Transmission Charging Methodology to the new charging structures compliant with the EU Tariff Code.

It moves the GB Charging Methodology from a 'Capacity and Commodity' Charge structure to a purely capacity-based methodology for Transmission Services. This delivers compliance with the EU Tariff Code.

The EU Tariff Code does not require there to be a charging arrangement specific to manage potential inefficient bypass. The revised Methodology does not include such a product, they do set the expectation for one to be developed separately and implemented under a new Modification ideally with the same effective date.

Through Request Modification 0670R- *Review of the charging methodology to avoid the inefficient bypass of the NTS* (Request 0670R) the industry has taken the opportunity to reassess the original intent of the NTS Optional Commodity Charge (OCC) and develop a new charging mechanism which is compliant with the EU Tariff Code and one that provides an alternative charge to the appropriate Users, being those where bypassing the grid is a commercially viable option.

How

A new charging arrangement is proposed specifically for directly connected NTS Users located at, or near, Entry Points where construction of a pipeline to bypass the NTS may be a commercially viable option. The charging arrangement is referred to as the Conditional Product.

The Conditional Product will feature two elements: firstly, an assessment of the risk of bypass from the perspective of the costs of construction of a private pipeline; and secondly a representation of the costs of operating the pipeline. In combination, the capital and operational costs, in aggregate, will be considered by a potential bypass party in its assessment regarding the merits of maintaining a connection to the NTS or building and operating a bypass pipeline.

¹ https://www.gasgovernance.co.uk/0678

² EU Tariff Code (Regulation 2017/460): https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R0460

Stage One – Construction Cost Assessment, derivation of Transmission Services Capacity Reserve Price discount and eligibility to access the product

Through applying a generic methodology, incorporating a view of expected costs of bypass, an assessment compared to likely charges in conjunction with key principles of delivering a **simple**, **targeted** and **proportionate** product, this will better facilitate understanding of a genuine bypass risk, and thus eligibility for the Conditional Product.

Stage Two - Derivation and application of Non-Transmission Services Commodity Charge discount

The non-transmission services component of this Conditional Product applies generic methodology to reflect the costs of operating private pipelines. A simple, standard discount is applied to all flows along the nominated routes which are eligible for the discount established in stage one.

The Conditional Product is informed by the costs and benefits associated with remaining connected to the NTS. These criteria and the formula for calculating the product rates will be reviewed periodically, to ensure its suitability and application. This will include the relevance of the product as part of the overall Charging Methodology including, and not limited to, the levels of cross subsidy delivered from the uptake of the conditional arrangement

Changes are proposed to the Charging Methodology contained within UNC TPD Section Y. It is also likely that changes to other sections of the UNC TPD (Sections B and G) and the Transition Document will be required.

2 Governance

Justification for Urgency

This Modification addresses the same issues that have been raised under Modification 0728, Urgent status is sought on the basis that the need to introduce the mechanism advocated by this Modification is driven by an imminent date related issue, this being the removal of the existing arrangement, (the NTS OCC), which is to take effect from 1 October 2020.

This Modification has many common features to Modification 0728 but the Proposer believes it improves on the solution being proposed by National Grid's Modification 0728 as, in particular, it more accurately represents the full cost of bypassing the NTS, which forms the basis for determining the discount.

Being conscious of the need for Urgency and the arguments in support of Urgency contained within Modification 0728, this Modification should, as far as practicable, follow the same timetable as Modification 0728 so that both Modifications can be considered by the UNC Modification Panel, the industry and Ofgem at the same time, making for an efficient governance process. It is the view of the Proposer that raising this Modification as a new, separate Modification, which may or may not be granted Urgent status, would result in a different timetable, be consulted on separately, be considered by Panel separately and would therefore make for an unnecessarily complex and inefficient process. This could severely impact the intentions behind the Urgency that it is anticipated to be granted for Modification 0728.

In summary, this Modification has been raised as a valid alternative solution to the one being proposed under Modification Proposal 0728.

Justification for Authority Direction

This Modification is recommended to be sent to the Authority for direction as it is likely to have a material effect on commercial activities relating to the shipping, transportation and supply of gas because, if implemented, it is likely this Modification will have a material impact on the allocation of charges across NTS networks Users.

Failing to develop a replacement for the NTS OCC would have a significant impact on those Users and consumers currently using, or potentially benefitting, from the NTS OCC. It would also increase the likelihood of a party bypassing the NTS or considering a bypass of the NTS.

Analysis based on the period 2020/21 using the Postage Stamp (PS) Reference Price Methodology (RPM) applying the prevailing NTS OCC product suggests that this could potentially lead to thirty-seven of the currently active routes potentially bypassing the NTS. These represent those parties who could avail of the NTS OCC based on the usage of the product in place within the Gas Year October 2019 – September 2020.

In total, these routes have a combined 'impact' on Transportation Charges of approximately £184.2m (calculated on the basis of the current methodology in place for Gas Year 2019/20 using the known nominated routes at this time). Modelling using the revised Methodology for Gas Year 2020/21 shows this would be made up of £28.7m of NTS OCC contributions and £155.5m of socialisation based on a Transmission Owner and System Operator revenues which equates to approximately 20% of Maximum Allowed Revenue for that period. If all these Users did bypass the NTS then £28.7m extra would also be socialised.

Whilst this level of bypass may be unlikely, due to some of these distances involved, it would be realistic to suggest some would more actively consider a bypass if there were no specific product within the charging framework.

Requested Next Steps

This Modification should be treated as an Alternative to Modification 0728. It should proceed as such under the same timetable as agreed with the Authority for Modification 0728 as far as is practicable.

For ease of reference, a table comparing Modification 0728 with its Alternatives is contained in Appendix 3

3 Why Change?

Background

- 3.1. The topic of managing inefficient bypass as part of the Transportation Charging Methodology has been extensively discussed during the development of Modifications 0621 (and alternatives) Amendments to Gas Transmission Charging Regime, 0678 (and alternatives) Amendments to Gas Transmission Charging Regime, 0636 (and alternatives) Updating the parameters for the NTS Optional Commodity Charge and 0653 Updating the parameters for the NTS Optional Commodity Charge Introducing the NTS Optional Capacity Charge.
- 3.2. A more targeted review has been undertaken under the remit of Request 0670R with further discussions taking place in the NTS Charging Methodology Forum (NTSCMF). Pre-Modification discussions have taken place at Request 0670R and/or the NTSCMF.
- 3.3. This Modification is proposing to include a charging product to the revised methodology to be effective from 01 October 2020 where there is no such product for managing inefficient bypass as part of the proposed Charging Methodology. Where any relevant comparisons are made to the methodology (the prevailing NTS OCC) that is in place up to and including Gas Year 2019/20 (i.e. prior to the revised Methodology) this is referenced in the appropriate section.

Consequences if Not Addressed

3.4. If the Charging Methodology does not incorporate measures to address potential bypass of the NTS in the circumstances described, there will likely be more active consideration of bypass of the NTS.

In some instances, doing so could reduce transportation charges significantly for selected Users, resulting in large savings over a relatively short period of time for bypass consumers.

3.5. Should the relevant consumers elect to bypass the NTS, large volumes could be lost from the NTS whilst the Maximum Allowed Revenue (MAR) nevertheless remains unchanged. This could create a significant increase in charge rates for all remaining Users of the NTS, with no contribution towards this revenue from those electing to bypass.

Analysis shows that this could mean socialisation of up to a combined 24.4% of Transmission Operator (TO) costs and System Operator (SO) costs based on the prevailing NTS OCC (prior to the revised methodology), spread over both Entry and Exit Users:

Prevailing NTS OCC		
OCC Contribution	£28,695,987.33	
Potential TO Socialisation	£97,559,664.09	
SO Socialisation	ation £57,983,030.86	
Total as % of MAR	R 24.4%	
Routes Considered	I 37	
Max Effective Rate Discount	int 99.3%	
Longest Route Considered	d 244.0km	

- 3.6. Details of these calculations can be found in the Appendix.
- 3.7. Incentivising those points genuinely at risk of bypassing to continue to use the NTS would create some additional costs for other Users, but these should be less than the figures possible should there be no incentive put in place and this demand be 'lost' from the NTS along with contributions towards Allowed Revenue collection.
- 3.8. With any arrangement that results in a discounted treatment for some Users, the amount of the 'discount' or benefits realised will adjust other charges. This can often be referred to as a cross subsidy, given it results in an amount not paid by some, and picked up by others. As a result, the level of this redistribution should also play a part in the assessment of the Modification. The level of redistribution should always be kept under review and should it become necessary to update any element of the method outlined in this Modification, it would be via a UNC change at the appropriate time.

Impacts and Considerations

3.9. Ultimately a network User's primary driver, as to whether to remain on the NTS or bypass the network entirely, will be based on which option is more cost effective for their business. This decision will take in to account the up-front capital expenditure for construction and/or commissioning of a pipeline, potentially lengthy planning and construction times, cost of use of the NTS during that period, and long-term operational expenses including upkeep and maintenance of the asset and day-to-day operational costs. This would be compared with the Transportation Charges related to alternatively accessing and using the NTS. This decision would likely consider the less easily quantifiable

advantages inherent in remaining connected to the NTS such as security of supply and access to the National Balancing Point (NBP).

- 3.10. In practice, bypassing the network requires a single pipeline from Entry point to Exit point, the planning, development and construction of which could take months or years in some instances. As an indication of timescales, the current Planning and Advanced Reservation of Capacity Agreement (PARCA) process sets timescales between 12 and 90 months (between 1 and 7.5 years).
- 3.11. It should be noted that any access to the proposed conditional discounts would be immediate, where eligibility and accessibility permits. This is also an advantage in remaining connected to the NTS compared to the process that would lead up to and include building and commissioning and operating a bypass pipeline.
- 3.12. Those Modification 0678 alternatives which proposed a new charge to avoid the inefficient bypass of the NTS were considered non-compliant with the EU Tariff Code as outlined in Ofgem's minded to decision on Modification 0678 and suite of alternatives.
- 3.13. One concern highlighted was, amongst other points, Users potentially being able to take advantage of some preferential charges, regardless of whether a genuine consideration is bypass of the NTS. Under the NTS OCC this issue is also seen whereby, the uptake of the product, in combination with the impacts and interactions in the Charging Methodology results in a disproportionate use over its intended usage and resulting in unrealistic distances for a potential bypass.
- 3.14. This Modification proposes that both the charge rate, and more importantly eligibility for a new product, must be more informed by the risk of bypass. The Proposer is of the view that distance between Exit and Entry Point, as well as forecasted volumes, must be accounted for in calculating the potential costs or savings available to those looking to bypass the network. Whilst difficult to quantify, Users should also be aware of the additional benefits described above.
- 3.15. Industry must also be aware that a reduced rate for some Users does result in an increase to the costs for others. As described above, not replacing the NTS OCC, and affected Users choosing to bypass, would generate significant shortfall in the revenue recovered and so charge rates would increase. Therefore, the Methodology for this product must balance the potential loss of demand from the NTS (and the resultant increase in revenue recovery from those remaining connected) with the potential level of cross subsidy due to discounts being provided to those at risk of bypassing the system.
- 3.16. The Proposer acknowledges that some level of socialisation is required to suitably incentivise Users to remain connected to the NTS and avoid the potentially larger costs associated with the loss of large volumes of demand from the NTS. Nonetheless, The Proposer also recognises the need to target only those points where a risk is clear and present, in particular those Users who have situated their businesses near an Entry point.
- 3.17. Socialisation of some costs and charges can typically be a feature of a regime with multiple Users and specific access arrangements. Where discounts or alternative charges are a feature (e.g. the Storage discount to Transmission Services (TS) capacity reserve prices in the revised Methodology, Storage exemption from General Non-Transmission Services (Gen Non-TS) Commodity Charges or the Interruptible Discount to TS capacity reserve prices) they result in amounts effectively not levied

on some Users and paid for by others. Providing these further the relevant objectives these can be viewed as positive when applied in the overall methodology.

Recent Developments

- 3.18. A critique of the previous NTS Charging Methodology undertaken as part of the Gas Transmission Charging Review identified that it is too volatile, unpredictable and does not provide stability of charges for Users. The revised Methodology will produce stable and predictable transportation charging and is compliant with EU Tariff Code (Regulation 2017/460). Under the revised Methodology the NTS OCC will cease with effect from 1 October 2020.
- 3.19. Despite the absence of a mechanism to dis-incentivise inefficient bypass of the NTS in the revised Methodology, the Proposer recognises that there remains an enduring need for the prospective Charging Methodology to include bespoke charging arrangements to ensure the efficient use of the network, in this case to avoid inefficient bypass of the NTS by large consumers located close to points of entry to the NTS. To facilitate this aspiration, National Grid initiated the review under Request 0670R to provide a suitable forum to discuss and consider outside of the main charging developments under Modification 0678.
- 3.20. Through Request 0670R several options have been discussed. Following the 'minded to' position from Ofgem on Modification 0678 and alternatives on 23 December 2019, National Grid discussed a new conditional discount proposal for managing inefficient bypass through the Charging Framework at workgroups held in the first quarter of 2020. This sought to address issues presented in this 'minded to' position in addition to the issues highlighted above.
- 3.21. This Modification proposes to change the UNC that will be effective from 01 October 2020.

Overview of the Proposed Solution

- 3.22. This Modification, raised following development within Request 0670R, is designed against the baseline of the revised Methodology which will take effect from 01 October 2020
- 3.23. The solution consists of two elements: a Transmission Services Capacity Discount; and a Non-Transmission Services Commodity Discount. In the case of the second of these elements, a Non-Transmission Services Commodity Discount can only be applied to those volumes which flow along an eligible route as designated in the formulation of the Transmission Services Conditional Discount i.e. where the distance between the qualifying Entry and Exit Points is 18km or less.

Transmission Services Conditional Discount

- 3.24. For the Eligible Quantity (EQ) (which will have an Eligible Entry Quantity and an Eligible Exit Quantity), over a qualifying nominated route (an Entry point and an Exit point), as per the Licence, there will be a discount to Transmission Services Entry and Exit Capacity reserve prices. The level of discount will vary dependent on distance, reducing as distances increase up to a maximum distance. A maximum and minimum discount have been developed along with eligibility and access criteria. Any capacity or flow above the Eligible Quantity will pay the standard charges.
- 3.25. Transmission Services Entry and Exit Revenue Recovery Charges on capacity bookings remain payable.

Non-Transmission Services Discount

- 3.26. Flows along each qualifying nominated route will receive a standard discount will be applied to the Non-Transmission Services Commodity charges
- 3.27. The discount will be levied on the smaller of the two daily User allocations at the nominated Route Entry Point and the nominated Route Exit Point.
- 3.28. Further details on the specific components are outlined later in this Section 3.

Justification for Aspects of the Solution

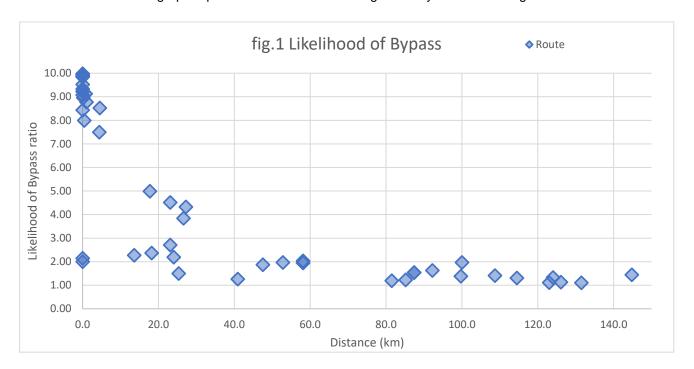
Eligibility

- 3.29. In determining eligibility for the discount, several factors have been considered:
 - This product is designed to reduce the risk of bypass for directly connected NTS Users only, therefore Distribution Networks and connections to Distribution Networks are not eligible to use this product. For connections to Distribution Networks, a bypass from an NTS Entry Point to the end DN offtake would therefore bypass both the Transmission and Distribution Networks which is unlikely to be considered. If it were the optimal infrastructure, it could be reasonably assumed it would be part of the DN network (and represented into its funding and regulated revenues) and therefore a bypass to the NTS is not likely to be an active consideration.

It should also be noted that when considering the party responsible for capacity and flows when it comes to DN offtakes to the NTS, they are different Users. As such, in these circumstances, it is not possible to assess the risk of bypass of the NTS due to the increased number of parties involved: the DN is responsible for capacity and the Shipper for the flows.

 Storage Sites are, purposefully, embedded within the NTS and so by design, it would be impossible to bypass the NTS. They are, therefore, not eligible to use this product.

Determining a Discount Curve for Transmission Services charges


- 3.30. To attempt to assess the likelihood of bypass National Grid has calculated, for each route combination a set of costs. Using the General Flow Equation; with constants taken from current UNC TPD Section Y 2.5.2, in effect up to 30 September 2020, current MNEPOR values, and a combination of straightline (where available) and pipeline distances taken form the National Grid pipeline data-book, a pipe diameter for all potential routes was calculated.
- 3.31. Using a formula published by the Council of European Energy Regulators in paper "PROJECT CEER-TCB18 -Pan-European cost-efficiency benchmark for gas transmission system operators 17.07.2019"³, timescales inferred from the PARCA process and the costs of using the NTS during construction period under Modification 0678A (where no NTS OCC product exists) a ratio of annualised bypass construction costs vs. NTS costs was calculated. The costs include the costs that

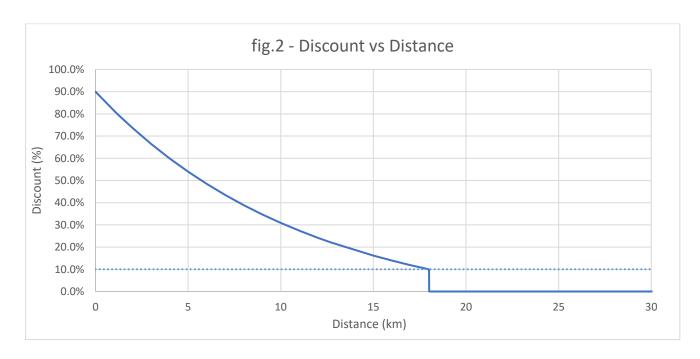
_

³ https://www.ceer.eu/1767

would most likely go into the preparation and building of an alternative pipeline. The design of the product is generic in its nature and application and may not consider every possible specific scenario.

- 3.32. The Proposer has not included the operational costs as the NTS operational charges (made predominantly via General Non-Transmission Services Entry and Exit Commodity Charges) in this calculation as they are dealt with separately (para 3.51)
- 3.33. The graph below (fig.1) plots these ratios determined as a measure of build costs versus NTS Charges against the distance between Entry and Exit points to inform the likelihood of bypass. Each marker on the graph represents a route from an Eligible Entry Point to an Eligible Exit Point

- 3.34. The graph demonstrates a curve and suggests a correlation between distance and likelihood of bypass. The highest calculated ratio of bypass costs against NTS usage costs is at 0km, the ratio at that point is 9.973:1, this implies the most likely bypass User, over a ten-year period could achieve a 89.97% reduction on NTS Transmission costs. This has been rounded up to the nearest whole % value, 90%, to inform the Maximum Discount offered under the new proposed arrangement.
- 3.35. Using a curve, the discount level is scaled down dependant on distance from the Entry point to a minimum of 10% discount. This limit of 10% discount is also informed by the likelihood of bypass, the ratios suggest that no User beyond 17.7km would consider investing the time, effort and capital required to bypass when the benefits over 10 years are not significant.
- 3.36. The curve used to calculate the discount is an inverse exponential, starting at 90%, the calculated discount without any limitation would run to 0% eventually, but it is proposed to limit the discount to 10%. Below this point (i.e. less than 10% discount), a larger discount is available via the regular interruptible auction and so all Users could find equal or better value outside of the offered bypass avoidance product. It is assumed that the most economic decision would be made by the relevant party to access the lower priced capacity. This, therefore, informs a 'cut-off' for the distance over which this product is available.


3.37. The maximum distance, or due cross subsidy limitation, is therefore 17.7km. The Modification is proposing to round this up to the nearest whole km, 18km. In order to determine the specific discount, it is proposed to use a curve that matches the inverse exponential curve that provides a higher discount over a small distance. The maximum discount will be 90% as outlined above. As the distance increases, the discount reduces until it reaches 10%. Beyond the maximum distance permitted of 18km, any nomination would be ineligible for the conditional discount.

Applying the discount curve - Route Specific Discount

3.38. The scaling of the Route Specific Discount at any point between 0km and the Due Cross Subsidy Limitation is based on a curve. The curve is designed to peak at 0km with a discount of 90% and meet the calculated distance cap at 10%. Immediately after this point the discount drops to zero.

$$PCDr = \left(\left(\frac{1}{IFERROR \left(e^{\left(\frac{1.6094}{CSL} \right)}, 1 \right)} \right)^{SLDr} \right) - \left(1 - \left(\frac{MDA}{100} \right) \right)$$

3.39. Using the established guidance points; 90% Max Discount Available (MDA), 10% Minimum Discount Available (which informs the constant: 1.6094) and a distance limitation of 18km, this plots a curve as demonstrated in fig.2 below:

3.40. The Cross-Subsidy Limitation (CSL) of 18km could translate to an approximate socialisation of 7.2% of Transmission Services Revenue. This level of socialisation in addition to the distance limitation, will be kept under review over time so that there remains an attractive option for those more likely to consider a bypass and also does not unduly levy too high an impact (i.e. increase) in charges to other Users.

Eligible Quantity for Transmission Services Discount

- 3.41. The Route Specific Discount will only be applicable in respect of the Eligible Quantity
- 3.42. The Eligible Quantity (EQ) calculation is fully defined in the Business Rules (Section E) and examples will be provided in the Appendix. There is potential for a different value for Entry EQ and Exit EQ in the same nominated route.
- 3.43. In summary, this is based on the minimum of four values (associated to the route requested and the User):
 - the Firm* Capacity at Entry
 - the Firm* Capacity at Exit
 - the Flow at Entry
 - the Flow at Exit.

*Firm Capacity includes Obligated and Non-Obligated Firm Capacity

- 3.44. It will be assumed that at an Entry Point, Existing Contracts (EC) will be flowed against first, and therefore as Existing Contracts are a fixed price which cannot be changed, any discount will not be applied to Existing Contracts. Only flows above the level of Existing Contracts will become Eligible, providing that there is also enough Firm Capacity in excess of the Existing Contract to match the flows.
- 3.45. Capacity acquired via secondary transfers will not be considered for a discount, this is due to the liability for traded capacity remaining with the initial purchaser rather than transferring to the new holder making it impossible to discount under current trading rules.
- 3.46. For Entry, Capacity acquired via secondary transfers and Existing Contracts under the revised Methodology, whilst ineligible for a discount on the Entry Reserve prices, these can be used to calculate a discount to Exit Reserve Prices.
- 3.47. For Exit, Capacity acquired via secondary transfers, whilst ineligible for a discount on the Exit Reserve prices, these can be used to calculate a discount to Entry Reserve Prices.
- 3.48. Capacity sold via secondary transfers will also adjust the amount available for discount. Should there be transfers out equivalent to firm capacity purchased by that Shipper (as primary capacity, bought direct from National Grid Gas), then these two values offset each-other and no discount is available.
- 3.49. Where a Shipper has two eligible routes which start at the same Entry Point, the capacity and flow recorded at the Entry Point, will be split between the eligible Exit Points, proportional to the Exit capacity and Exit flows. Existing Contracts will also be apportioned between the two routes to ensure neither routes are disproportionately impacted.
- 3.50. For any volumes in excess of the Eligible Quantities, these will pay the standard charges applicable (i.e. non-discounted Transmission Services capacity reserve charges and any other Transmission Services).

Non-Transmission Services Commodity Discount

- 3.51. The derivation of the level of discount to Non-Transmission Services Commodity Charges should reflect the costs of operating a bypass pipeline consistent with the approach adopted in the calculation of the Transmission Services Capacity Charge discount.
- 3.52. The discount to Non-Transmission Services Commodity Charges will only be available to sites eligible for the Transmission Services Charge Discount
- 3.53. The Non-Transmission Services Commodity Charge is applied for the purposes of recovering the revenue allocated to the provision of Non-Transmission Services by National Grid NTS.
- 3.54. Non-Transmission Services Charges are set to recover Maximum NTS SO Allowed Revenue (NTS SOM). In a paper⁴ published by WWA as part of the development of Modification 0621G, a commentary was provided regarding the core components of the Maximum NTS SO Allowed Revenue determination. The paper concluded that "the vast majority of costs which contribute to the calculation of the SO Allowed Revenue are specific to the NTS and not relevant to a private point to point pipeline. National Grid Gas agreed with this principle and amended its Modification 0621 so that the proposed NTS Optional Charge, included in the proposal, was broadened to incorporate Non-Transmission Services Charges (in previous drafts the NTS Optional Charge was designed as an alternative to Transmission Services Revenue Recovery Charges only).
- 3.55. The Proposer maintains that the conclusions set out in the WWA paper remain valid and that in order to calculate operational costs relevant to a bypass pipeline, so as to discourage inefficient NTS bypass, a discount to the standard Non-Transmission Commodity Charges should be established.
- 3.56. The WWA paper identifies that Base NTS System Operation Revenue, which includes allowances for IT, property, processes and human resources is the only core component which legitimately would "read across" to the operation of bypass pipelines, notwithstanding that the NTS Base NTS System Operation Revenue reflects the costs of operating the entire NTS network. The latest assessment of the contribution of Base NTS System Revenue to Maximum NTS SO Allowed Revenue is published in National Grid Gas' NTS Charge Setting Information Publication April 2020⁵ and is provided below in fig 3 for convenience

Figure 3 – Excerpt from National Grid Gas Charge Setting Publication – April 2020

Terms used for Final notification of charges	Current	April Ind	April
Base Price Control SO Revenue (SOBRt)	140.9	109.6	109.1
Constraint Management revenue adjustment (CMt)	14.1	12.9	12.9
SO external incentive adjustment (SOOIRCt)	103.9	105.2	92.7
SO Transportation Support Services revenue adjustment (TSSt)	-5.9	-3.0	-3.0
SO Legacy accelerated incremental capacity delivery incentive (DELINCt)	0.00	0.00	0.00
Revenue adjustment term for prior year (SOKt) *	12.3	-12.1	-12.1
Maximum NTS SO allowed revenue (SOMRt)	240.7	236.9	223.8

https://gasgov-mst-files.s3.eu-west-1.amazonaws.com/s3fs-public/ggf/book/2018-02/SO%20derivationv3%20NW.pdf

https://www.nationalgridgas.com/charging/transmission-system-charges

- 3.57. The methodology for setting the standard Non-Transmission Services Discount assumes that there is a relationship between pipeline length and the level of costs associated with operating a pipeline. This is consistent with the approach adopted in the derivation of the Transmission Services Discount, although given the restriction applied to the length of eligible pipelines it is unreasonable to envisage that the operational costs for each of the routes will vary. Certainly, given the nature of these short distance, point-to-point type pipeline projects the Proposer anticipates that the operational costs associated with each route will be minimal and similar.
- 3.58. Based on the maximum distance cap of 18km for the application of Transmission Services discount it is predicted that 17 routes will be eligible for the product, although it should be recognised that this number may decrease if some offtakes decide to bypass the NTS, or increase if future NTS connectees are able to avail themselves of the Conditional Product.
- 3.59. The Proposer believes that drawing a direct relationship between the costs of operating the NTS and pipeline length is reasonable, however, expects that the allocation of NTS Allowed Revenues to individual pipelines no longer than 18 km, is likely to result in costs which will exceed those incurred in practice i.e. the £/km costs associated with operating a high pressure network will be greater than the £/km costs of operating a short distance pipeline.
- 3.60. The methodology adopted to determine the level of Non-Transmission Services discount allocates a proportion of National Grid NTS SO Base Allowed Revenues in accordance with the relative aggregate lengths of the forecast eligible routes (17 routes) compared to the total length of the NTS. The aggregate length of the eligible routes is based on the maximum permissible distance of 18km which will greatly exceed the aggregate actual lengths of the eligible routes. In addition to para 3.59 this will result in an allocation of costs which will exceed actual costs, where it is the case that there is a direct correlation between pipeline lengths and operational costs.
- 3.61. The level of the proposed Non-Transmission Services Discount is 80%. This translates to a socialisation of 8.8% of Non-Transmission Services Revenue.
- 3.62. A comparison of the levels of socialisation under the current NTS OCC methodology (if applied to 2020/21 prices) and the socialisation based on this Modification applied alongside Modification 0678 for the year 2020/21 is provided below.
- 3.63. To put this in context, based on the socialisation costs identified in this table, it is estimated that the impact on the average domestic customer will range between 65p per annum, assuming only Exit costs are passed through, to £1.94 per annum if all Entry and Exit costs are passed through^{6.} These increases measure favourably against a total average gas bill in the region of £550 with total NTS charges contributing up to £26.

_

⁶ Costs calculated by WWA Ltd using the National Grid Transmission Services Sensitivity and Non-Transmission Services Sensitivity models. Average domestic customer assumed to consume 1,200 Kwh/annum with a capacity requirement of 107 Kwh/pd/annum.

	Prevailing OCC	
OCC Contribution	£28,695,987.33	
Potential TO Socialisation	£97,559,664.09	
TO Socialisation as % of	12.9%	
SO Socialisation	£57,983,030.86	
SO Socialisation as % of	7.7%	
Total Socialisation as % of	20.6%	
Routes Considered	37	
Max TS Discount	N/A	
Max Gen Non-TS Discount	N/A	
Longest Route Considered	244.0 km	

	SHG Discount Proposal
OCC Contribution	£12,599,653.97
Potential TS Socialisation	£54,825,410.84
TS Socialisation as % of MAR	7.2%
Gen Non-TS Socialisation	£18,668,769.70
Gen Non-TS Socialisation as %	8.8%
Total Socialisation as % of	7.6%
Routes Considered	17
Max TS Discount	90.0%
Gen Non-TS Discount	80.0%
Longest Route Considered	17.7 km

Application and Disapplication

- 3.64. Once applied for, a nomination is considered to be enduring and will roll over for each Gas Year unless there is a disapplication.
- 3.65. A nomination is only valid should it be for a route permitted in the rules for eligibility.
- 3.66. Should a User wish to change the nominated route they can change the Entry Point flowing to an Exit point for example but cannot revert to the original nominated route within a Gas Year.
- 3.67. Once dis-applied for a route then a User cannot nominate that route again in that Gas Year.

Once on the route, the payable price, for Eligible Quantities will always be the lower of the discounted rate or the "standard" rates.

Review

- 3.68. It is proposed that the distance established as the maximum distance eligible and the level of the discount to the Non-Transmission Services Commodity charge, for the purposes of this Modification, will remain in place until a suitable time for review. The Proposer considers it prudent to continually monitor the uptake and impacts of this Conditional Product and propose amendments should it be considered necessary via normal UNC change processes. Examples of what may drive a review may include and not be limited to, assessing the level of cross subsidisation, uptake, any other related modification that may require a change. Any change would follow UNC governance for changes.
- 3.69. Applications for new routes will be assessed based on the same criteria.

Implementation

3.70. Proposed arrangements need to refer to the effective date as given by any Ofgem direction.

Incorporation / Impacts on other charges

- 3.71. Where possible, any anticipated Shortfall in revenues as a result of applying the conditional discounts will be accommodated into the Reference Price Methodology in determining the reference prices and the Non-Transmission Services Commodity charges to apply for the tariff year.
- 3.72. Transmission Services Revenue Recovery Charges, when set or updated, will also take into account the anticipated and actual recovery of revenues from the Conditional Product.

Revenues

- 3.73. Transmission Services Allowed Entry and Exit Revenues will be calculated as per the revised Methodology. The revenue collected from the Transmission conditional discount will go towards the Transmission Services Entry or Exit collection. As the charges for eligible quantities will be discounted capacity charges, they remain capacity revenue to be collected as part of the Transmission Services Revenues.
- 3.74. Revenue collected from the Non-Transmission Services conditional discount will contribute towards Non-Transmission Services Revenue.

4 Code Specific Matters

Reference Documents

UNC Request 0670R: https://www.gasgovernance.co.uk/0670

EU Tariff Code (Regulation 2017/460): https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R0460

UNC Modification Proposal 0678 and Alternatives: https://www.gasgovernance.co.uk/0678

Existing NTS Optional Commodity Charge (NTS OCC) Methodology (Part A1 of <u>UNC TPD Y</u>) effective to 30 September 2020: https://www.gasgovernance.co.uk/TPD

Gas Transmission Charging Review (GTCR) and associated update letters:

https://www.ofgem.gov.uk/gas/transmission-networks/gas-transmission-charging-review

<u>Customer and Stakeholder Objectives developed within NTSCMF:</u>

http://www.gasgovernance.co.uk/ntscmf/060916

Knowledge/Skills

An understanding of Request 0670R, Modification 0678 (and alternatives), UNC TPD Section Y Part A, the EU Tariff Code, Gas Transmission Charging Review (GTCR) documentation and the customer / stakeholder objectives developed within NTSCMF would be beneficial.

5 Solution

A. Introduction

These Business Rules describe the scope of, eligibility for, and calculation of, a Transmission Conditional
Discount and Non-Transmission Conditional Discount for Avoiding Inefficient Bypass of the NTS, which
incorporates within the NTS Charging Methodology conditional discounts as a means of dis-incentivising
inefficient bypass of the NTS.

2. These rules have been developed to form the solution for UNC Modification Proposal 'Introduction of Conditional Discounts for Avoiding Inefficient Bypass of the NTS' (version 1.0). These rules do not constitute legal text.

B. Definitions

- 3. 'CDSP' means the Central Data Services Provider.
- 4. 'Direct Connect' or 'DC' means an Exit Point from the National Transmission System (NTS) which does not comprise a Storage Connection Point or an Offtake to a Distribution Network.
- 5. 'Distance Matrix' means the document owned and maintained by National Grid that specifies the straight-line distances in km (to an accuracy of one decimal place) between Entry Points and Exit Points on the National Transmission System.
- 6. 'Entry Point' means an Aggregate System Entry Point as defined in the Uniform Network Code.
- 7. 'Exit Point' means NTS Exit Point as defined in the Uniform Network Code.
- 8. **'Existing Contracts**' means capacity procured (for an Entry Point) prior to 6th April 2017 (for the avoidance of doubt, the capacity purchased may apply in respect of a day or days following this specified date). In respect of adjustments (including trades) to available Entry Capacity, where the adjustment is executed:
 - 8.1. Up to and including 5th April 2017, the Capacity will be treated as Entry Capacity procured via Existing Contracts; or
 - 8.2. Subsequent to the 5th April 2017, the Capacity will not be treated as Entry Capacity procured via Existing Contracts.
- 9. **'Firm Entitlement**' means, in the context of Entry capacity or Exit capacity, all Firm capacity (including any Existing Contracts) prior to adjustments for all Secondary Transactions.
- 10. 'Forecasted Contracted Capacity' or 'FCC' means the forecast capacity booked at an Entry Point or and Exit Point (for the forthcoming gas year) excluding Existing Contracts. The FCC for an Entry Point or an Exit Point will be equal to a forecast value determined by National Grid taking account of capacity booking trends observed at respective Entry Points and Exit Points as specified in the FCC Methodology.
- 11. **'Net Firm Entitlement**' means, Firm Entitlement adjusted for all Secondary Transactions and, for the avoidance of doubt, excluding all Interruptible Capacity.
- 12. 'PARCA' means a Planning and Advanced Reservation of Capacity Agreement.
- 13. 'Premium Price' means the difference between the allocated (final) price and the Reserve Price in the relevant auction or as specified in the relevant PARCA agreement.
- 14. 'Reserve Price' means the price for a capacity product (p/kWh/d) following the application of any adjustments.
- 15. 'Secondary Transactions' means:
 - 15.1. 'Acquiring' and 'disposing' capacity trades (System Capacity Transfer as per UNC TPD section 5.1);
 - 15.2. Long term use it or lose it (withdrawal of capacity by National Grid as per UNC EID section B8);
 - 15.3. Congestion Management Procedure (CMP) surrender (Surrender as per UNC EID section B7);
 - 15.4. Rolling monthly surrender (Surrendered NTS Entry Capacity as per UNC TPD section B2.3); and
 - 15.5. Buybacks (Surrender of NTS Entry Capacity as per UNC TPD Section B2.10).

For the avoidance of doubt, Secondary Transactions do not include assignments (Capacity Assignment as per UNC TPD Section B6) nor EAFLEC decreases (Reduction of Enduring Annual NTS Exit (Flat) Capacity as per UNC TPD section B3.2).

16. 'Transmission Services Target Revenue' means Transmission Owner (TO) revenue (as determined in the National Grid's Transporter Licence) minus revenue due in respect of NTS Metering activities and DN Pensions Deficit costs and including those charges in respect of NTS Capacity (but not including Overrun Charges) or the surrender of NTS Capacity classified as a component of SO allowed revenue. The Transmission Services Target Revenue will also be reduced by any known revenue associated to Existing Contracts.

Transmission Conditional Discount

C. Product Description (Transmission Conditional Discount) and Alternative Charges

- 17. The Transmission Conditional Discount for Avoiding Inefficient Bypass of the NTS ('Transmission Conditional Discount') is available, in respect of Firm Capacity only, for the relevant routes to derive a discount that will be applied to the standard Transmission Services Capacity Reserve Prices for Entry and Exit (the 'Discounted Reserve Price'). A route comprises the combination of an Entry Point, an Exit Point and a User. Where the User elects to incur the Discounted Reserve Price, this will be payable in respect of the Entry Eligible Quantity (determined as per paragraph 35) and Exit Eligible Quantity (determined as per paragraph 36) of Transmission Service Entry Capacity and Exit Capacity respectively for the route.
- 18. The standard Transmission Services Capacity Reserve Prices for:
 - 18.1. The relevant Entry Point will be payable for any Entry Capacity registered at the Entry Point in excess of the Entry Eligible Quantity; and
 - 18.2. The relevant Exit Point will be payable for any Exit Capacity registered at the Exit Point in excess of the Exit Eligible Quantity.
- 19. The Discounted Reserve Price in respect of Entry Capacity (DRP_{En}) is determined using the following formula:

$$DRP_{En} = RP_{En} \times \frac{100 - TCD_r}{100}$$

where:

- RP_{En} means the standard Reserve Price for firm Entry Capacity (in respect of the relevant Eligible Entry Capacity Tranche as defined in paragraph 35.3) as determined pursuant to the Charging Methodology.
- TCD_r means the percentage value of the Transmission Conditional Discount (rounded to the nearest whole number) for the relevant route determined as per paragraph 34.
- 20. The Discounted Reserve Price in respect of Exit Capacity (DRP_{Ex}) is determined using the following formula:

$$DRP_{Ex} = RP_{Ex} \times \frac{100 - TCD_r}{100}$$

where:

- RP_{Ex} means the standard Reserve Price for firm Exit Capacity (in respect of the relevant Eligible Exit Capacity Tranche as defined in paragraph 36.3) as determined pursuant to the NTS Charging Methodology.
- TCD_r means the percentage value of the Transmission Conditional Discount (rounded to the nearest whole number) for the relevant route determined as per paragraph 34.

- 21. The values DRP_{En} and DRP_{Ex} will be rounded to 10 decimal places where the relevant point is an Interconnection Point and 6 decimal places where the relevant point is not an Interconnection Point.
- 22. As the Transmission Conditional Discount represents a discount only to the Transmission Services Reserve Price for capacity, any Premium Price remains payable in full.
- 23. For the avoidance of doubt:
 - 23.1. Any capacity overrun charges will be calculated using the standard Transmission Services Capacity Reserve Prices for the relevant Entry Point or Exit Point; and
 - 23.2. All other charges (where relevant) will remain payable including the any Transmission Services Revenue Recovery Charges.

Duration

- 24. The election to incur the Discounted Reserve Price (as a consequence of the application of the Transmission Conditional Discount) will be enduring until:
 - 24.1. The relevant User makes a valid Dis-application in accordance with paragraph 46; or
 - 24.2. The point at which the relevant User is no longer a Registered User at the specified Exit Point; or
 - 24.3. A Periodic Review (undertaken as per paragraph 51) or recalculation undertaken as per paragraph 51 determines that the Transmission Conditional Discount (TCD_r) for the relevant route is 0%.

Interaction with Charging Methodology

- 25. National Grid will forecast the extent of all Users elections to incur the Discounted Reserve Price for the forthcoming Gas Year. The net impact (of this forecast) on the aggregate amounts of Transmission Services Revenue which National Grid NTS estimates would be earned in the Gas Year will be taken into account (where practicable) as follows:
 - 25.1. (except for the Gas Year Commencing 1st October 2020) when assessing the Entry Revenue Scaling Factor and Exit Revenue Scaling Factor for the relevant Gas Year; otherwise
 - 25.2. will be taken into account in the determination of Transmission Services Revenue Recovery Charges for the relevant Gas Year.

D. Route Eligibility

26. Whereas one Eligible Entry Point (see paragraph 27) can be associated with more than one Eligible Exit Point (see paragraph 28), it is not permitted for a single User to associate more than one Eligible Entry Point to an individual Eligible Exit Point.

Entry Points

- 27. The following Entry Point types (as listed in National Grid's Transporter Licence, Special Condition 5F.27, Table 4B) are 'Eligible Entry Points':
 - Beach Terminal
 - Biomethane Plant
 - Interconnection Point
 - LNG Importation Terminal; and
 - Onshore Field.

Exit Points

- 28. The following Exit Point types (as listed in National Grid's Transporter Licence, Special Condition 5G.31, Table 8) are 'Eligible Exit Points':
 - DC ('Direct Connect'); and
 - Interconnector.

E. Determination of Discount

29. The sequential steps detailed below are applied in order to derive the percentage point value of the Transmission Conditional Discount (the term TCD_r as applied in paragraphs 19 and 20) for the relevant route

Minimum and Maximum Allowed Discount

- 30. The minimum discount available at the Due Cross Subsidy Limitation (see paragraph 32) is 10%.
- 31. The Maximum Discount Available (MDA) for a straight-line distance of zero is 90%.

Due Cross Subsidy Limitation

32. The value, CSL, will be set at 18km. This figure will be reviewed in line with paragraph 51 to ensure it remains appropriate over time.

Route Specific Discount

33. The Provisional Transmission Conditional Discount (PTCD_r) for the relevant route will be determined by application of the following formula:

$$PTCD_r = \left(\left(\frac{1}{IFERROR \left(e^{\left(\frac{1.6094}{CSL} \right)}, 1 \right)} \right) \land SLDr \right) - \left(1 - \left(\frac{MDA}{100} \right) \right)$$

where:

CSL means the Due Cross Subsidy Limitation determined in accordance with paragraph 32; and

MDA means the Maximum Discount Available determined in accordance with paragraph 31.

SLD_r means the Route Straight-line Distance.

34. The Transmission Conditional Discount (TCD_r) for the relevant route will be equal to the Provisional Transmission Conditional Discount (PTCD_r) unless the Provisional Transmission Conditional Discount is less than 10% in which case the Transmission Conditional Discount will be equal to zero.

Eligible Quantities

35. The Entry Eligible Quantity (EQ_{En}) for which the Discounted Reserve Price applies will be determined per route, in respect of each day as follows:

$$EQ_{En} = Min(IEQ_{En}, AQ_{En})$$

where:

IEQ_{En} means the Initial Eligible Quantity at Entry determined in accordance with paragraph 35.1; and

AQ_{En} means the Apportionment Quantity at Entry determined in accordance with paragraph 35.2;

35.1. The Initial Eligible Quantity at Entry (IEQ_{En}) will be determined each day as follows:

$$IEQ_{En} = Max(0, (Min(CAP_{En}, CAP_{Ex}, A_{En}, A_{Ex}) - EC_{En}))$$

CAP_{En} means in respect of Entry capacity, the greater of zero (0) and the User's Net Firm Entitlement on the day at the Eligible Entry Point;

CAP_{Ex} means in respect of Exit capacity, the greater of zero (0) and the User's Net Firm Entitlement on the day at the Eligible Exit Point;

A_{En} means the User's gas flow entry allocation on the day at the Eligible Entry Point; and

A_{Ex} means the User's gas flow exit allocation on the day at the Eligible Exit Point; and

EC_{En} means the quantity of Entry Capacity procured via an Existing Contract.

35.2. The Apportionment Quantity at Entry (AQ_{En}) will be determined each day as follows:

$$AQ_{En} = \sum CTQ_{En}$$

where:

Σ means the sum of; and

CTQ_{En} means the quantity of capacity in an Eligible Entry Capacity Tranche at Quantity Holder level as defined in paragraph 35.3;

- 35.3. An Eligible Entry Capacity Tranche means an Entry Capacity allocation procured or assigned in a single event at a known, uniform price that is not interruptible capacity nor Existing Contract Capacity and is not transacted via Secondary Transactions.
- 36. The Exit Eligible Quantity (EQ_{Ex}) for which the Discounted Reserve Price applies will be determined in respect of each day as follows:

$$EQ_{Ex} = Min(IEQ_{Ex}, AQ_{Ex})$$

where:

IEQ_{Ex} means the Initial Eligible Quantity at Exit determined in accordance with paragraph 36.1; and

AQ_{Ex} means the Apportionment Quantity at Exit determined in accordance with paragraph 36.2.

36.1. The Initial Eligible Quantity at Exit (IEQEx) will be determined each day as follows:

$$IEQ_{Ex} = Min(CAP_{En}, CAP_{Ex}, A_{En}, A_{Ex})$$

CAP_{En} means in respect of Entry capacity, the greater of zero (0) and the User's Net Firm Entitlement on the day at the Eligible Entry Point;

CAP_{Ex} means in respect of Exit capacity, the greater of zero (0) and the User's Net Firm Entitlement on the day at the Eligible Exit Point;

A_{En} means the User's gas flow entry allocation on the day at the Eligible Entry Point; and

A_{Ex} means the User's gas flow exit allocation on the day at the Eligible Exit Point.

36.2. The Apportionment Quantity at Exit (AQ_{Ex}) will be determined each day as follows:

$$AQ_{Ex} = \sum_{i} CTQ_{Ex}$$

where:

∑ means the sum of; and

CTQ_{Ex} means the quantity of capacity in an Eligible Exit Capacity Tranche at Quantity Holder level as defined in paragraph 36.3.

36.3. An Eligible Exit Capacity Tranche means Exit Capacity allocation procured or assigned in a single event at a known, uniform price that is not interruptible capacity and is not transacted via Secondary Transactions.

- 37. Where a User specifies a single Entry Point as the relevant Entry Point for more than one route (i.e. in respect of more than one Exit Point):
 - 37.1. The Entry Capacity (CAP_{En}) for the relevant route will be equal to the User's Entry Capacity at the ASEP pro-rated on the basis of the Exit Capacity quantity as a proportion of the aggregate of the Exit Capacity quantities (for which the Entry Point is the relevant Entry Point for the nominated routes);
 - 37.2. The quantity of Entry Capacity procured via an Existing Contract (EC_{En}) for the relevant route will be the equal to the User's Entry Capacity procured via an Existing Contract at the ASEP pro-rated on the basis of the Exit Capacity quantity as a proportion of the aggregate of the Exit Capacity quantities (for which the Entry Point is the relevant Entry Point for the nominated routes); and
 - 37.3. The Entry Allocation (A_{En}) for the relevant route will be the equal to the User's Entry Allocation at the ASEP pro-rated on the basis of the Exit Allocation quantity as a proportion of the aggregate of the Exit Allocation quantities (for which the Entry Point is the relevant Entry Point for the nominated routes).
 - 37.4. The Apportionment Quantity (AQ_{En}) for the relevant route will be the equal to the User's Apportionment Quantity pro-rated on the basis of the Exit Capacity quantity as a proportion of the aggregate of the Exit Capacity quantities (for which the Entry Point is the relevant Entry Point for the nominated routes);
- 38. For the purposes of determining the apportionment of:
 - 38.1. Entry Eligible Quantity between Eligible Entry Capacity Tranches, the Eligible Entry Quantity will be pro-rated on the basis of the Eligible Entry Capacity Tranche capacity quantity as a proportion of the aggregate of the Eligible Entry Capacity Tranche capacity quantities; and
 - 38.2. Exit Eligible Quantity between Eligible Exit Capacity Tranches (that may have been procured at different unit rates i.e. p/kWh/d), the Eligible Exit Quantity will be pro-rated on the basis of the Eligible Exit Capacity Tranche capacity quantity as a proportion of the aggregate of the Eligible Exit Capacity Tranche capacity quantities.

F. Application and Dis-application Process

- 39. A User can elect to incur the Discounted Reserve Price by making a valid Application to the CDSP via the Supply Point Nomination and Confirmation process or Supply Point Amendment process (or the equivalent notification for Interconnection Points).
- 40. A valid Application in respect of a route must:
 - Specify one Eligible Entry Point and one Eligible Exit Point;
 - Have a Route Straight-line Distance (SLD_r) that is within the Due Cross Subsidy Limitation (as per paragraph 32);
 - Not specify a route already elected by the applicant User previously within the Gas Year; and
 - Not specify an alternate Entry Point where the Exit Point has already had a valid Application within the Gas Year from that applicant User.
- 41. The Application will be validated against the criteria in paragraph 39 and a response will be issued to the User by the CDSP within two Supply Point Systems Business Days of receipt of the Application. This response will either be:
 - 41.1. Rejection of the Application (specifying a reason); or
 - 41.2. Notice of referral of the Application to National Grid; or

- 41.3. A Transmission Conditional Discount offer (or the equivalent notification for Interconnection Points) quoting a Transmission Conditional Discount value for the relevant route which will be valid for a period of six-months from the date of the Transmission Conditional Discount offer.
- 42. Where a valid Application is referred to National Grid (as per paragraph 41.2), a response will be issued to the User by the CDSP following the CDSP's receipt of the response to the referral from National Grid. This response will be that specified in either paragraph 41.1 or paragraph 41.3.
- 43. The User is entitled to dispute the Route Straight-line Distance utilised by National Grid to determine the Transmission Conditional Discount by submitting a new Application with an alternative six-figure grid reference for the Eligible Exit Point with supporting evidence. The CDSP will respond accordingly in line with paragraph 40.
- 44. User acceptance of a Transmission Conditional Discount offer (or the equivalent notification for Interconnection Points) issued in response to a valid Application must be confirmed (or the equivalent notification for Interconnection Points) by the User. It must specify a requested Effective Date which is between five and thirty Supply Point Systems Business Days after the date of receipt of the Transmission Conditional Discount offer (or the equivalent notification for Interconnection Points).
- 45. Once a confirmation (or the equivalent notification for Interconnection Points) has been accepted, the Transmission Conditional Discount becomes active on the Effective Date.
- 46. A User which has elected to incur the Discounted Reserve Price may withdraw this election by making a valid Dis-application to the CDSP via the Supply Point Nomination, Confirmation or Supply Point Amendment process (or the equivalent notification for Interconnection Points). From the effective date of this withdrawal, the standard Transmission Services Capacity Reserve Price will become payable.
- 47. A valid Dis-application must specify a requested withdrawal date which is between five and thirty Supply Point Systems Business Days following the date of receipt the Dis-application.
- 48. In making a Dis-application, the User acknowledges and accepts that withdrawal of the election for the relevant route will prevent (within the same Gas Year):
 - o Re-application for the same route; and
 - o An application for a new route based on the same Exit Point with an alternative Entry Point.
- 49. The Dis-application will be validated against the criteria in paragraph 46 and a response will be issued to the User by the CDSP within two Supply Point Systems Business Days of receipt of the Dis-application. This response will either be rejection of the Dis-application (specifying a reason) or confirmation of the withdrawal date.
- 50. For the avoidance of doubt, a route, the combination of Entry Point, Exit Point and User, can only be elected once per Gas Year. A User may apply, and withdraw within-year, but would not be permitted to reapply for the same route unless the requested effective date is in the following Gas Year.

G. Periodic Review and Price Change Notification

- 51. National Grid will undertake a Periodic Review of the Transmission Conditional Discount mechanism to:
 - 51.1. Assess all new and existing Entry Points and Exit Points based on updated information, point classifications, new points and updated FCC values.
 - 51.2. Assess whether any Entry Points or Exit Points are no longer Eligible due to changes in site type or status.
 - 51.3. Assess the suitability of the Due Cross Subsidy Limitation (CSL_y).
- 52. National Grid will recalculate Transmission Conditional Discounts annually and issue a Price Change Notification to the relevant Users (by 01 August) specifying the updated Transmission Conditional Discount value and, where appropriate, advise Users of routes which no longer qualify for a Transmission Conditional Discount. In respect of the latter, the relevant Users election for the Transmission Conditional

Discount will be automatically removed with effect from 1st October (with a notice to this effect issued to the User by the second Supply Point Systems Business Day prior to this date).

- 53. The recalculation referred to in paragraph 52 will take place prior to 1st May each year.
- 54. The CDSP will issue an annual reminder to the relevant Users that the Transmission Conditional Discount will continue to apply in following Gas Year unless a valid Dis-application is submitted by the User.

H. Implementation (including transition)

- 55. The first day from which the Discounted Reserve Price can be levied is the first day from which new charges (subject to direction to implement this Modification) are applied (the 'Earliest Charge Commencement Date').
- 56. Implementation of the new UNC rules regarding the Conditional Discounts will take effect in time to allow for the following to be completed ahead of the Earliest Charge Commencement Date:
 - 56.1. the processing of Applications for the Discounted Reserve Price (providing sufficient notice for the Discounted Reserve Price to be levied from the Earliest Charge Commencement Date)

I. Invoicing

57. Capacity Charges levied at the Discounted Reserve Price will be invoiced and payable in accordance with UNC TPD Section S.

Non-Transmission Conditional Discount

J. Product Description (Non-Transmission Conditional Discount)

- 58. A Non-Transmission Conditional Discount may only be applied on the relevant route from the Effective Date of the application of the Transmission Conditional Discount (para 45).
- 59. The value of the Non-Transmission Conditional Discount will be 80% where the discount will be applied to the General Non-Transmission Service Entry and Exit Charges and the resulting charge will be the Conditional Product Non-Transmission Charge (CPNTC), so as:
 - 59.1. CPNTC = NTCD% x General Non-Transmission Services Charges (entry and exit)
- 60. The Non-Transmission Conditional Discount is fixed and determined as follows:
 - 60.1. NTCD% = 1 (IPNTC/FNTC)

where:

NTCD% means Non-Transmission Conditional Discount fixed at 80%

ICPNTC means the Implied Conditional Product Non-Transmission Charge fixed at 0.0021 p/kwh

FNTC means Forecast General Non-Transmission Services Entry and Exit Charge for Formula Year 2020/21 fixed at 0.0103 p/kWh

60.2. Implied Product Non-Transmission Charge is determined as follows:

ICPNTC = (ICPNTCrevenue / FPQ) x 100

where:

ICPNTC_{revenue} means Revenue to recovered from the application of the Implied Conditional Product Non-Transmission Charge fixed at £4.68 million

FPQ means Forecast Product Volume which is the aggregate quantity of gas forecast by National Grid Gas to be allocated at the Entry and Exit Points on the forecast Conditional Product routes for Gas Year 2020/21 fixed at 224,384 GWh

60.3. Revenue to be recovered from the application of the Implied *Conditional Product* Non-Transmission Charge is determined as follows:

ICPNTCrevenue = (SOBRt-SOKt) x RPLD

where:

SOBR_t means Base Price Control SO Revenue for Formula Year 2020/21 as set out in National Grid Gas "NTS Charge Setting Report April 2020 Final" fixed at £109.1 million

 SOK_t means the Revenue Adjustment Term (for the prior year) for Formula Year 2020/21 as set out in National Grid Gas "NTS Charge Setting Report April 2020 Final" fixed at -£12.1 million

RPLD means Relative Pipeline Distance of forecast product routes fixed at 0.03864

60.4. The Relative Pipeline Distance of forecast product routes is determined as follows:

 $RPLD = 0.03864 = (FCPR \times CSL) / NTSD$

where:

FPR means Forecast Conditional Product Routes as determined by National Grid fixed at 17

CSL means the Cross-Subsidy Limitation fixed at 18

NTSD means the total distance of the NTS fixed at 7919.56 km

K. Eligible Quantities

61. The Conditional Product Non-Transmission Charge (CPNTC) entry and exit will be applied to each User Eligible Conditional Product Non-Transmission Quantity as follows:

61.1. User Eligible Conditional Product Non-Transmission Quantity

 $UECPNTCQ = Min (A_{En}, A_{Ex})$

Where:

A_{En} means the User's gas flow entry allocation on the day at the Eligible Entry Point; and

A_{Ex} means the User's gas flow exit allocation on the day at the Eligible Exit Point.

where a User has nominated or identified more than one Specified Exit Point at a Specified Entry Point, the UDQI shall be prorated in relation to the UDQOs at the relevant Specified Exit Points.

L. Price Change Notification

62. National Grid will publish the Conditional Product Non-Transmission Charges (entry and exit) at the same time as it publishes the General Non-Transmission Services Entry and Exit Charges

M. Interaction with Charging Methodology

63. National Grid will forecast the extent of all Users elections to incur the Discounted Non-Transmission Charges for the forthcoming Gas Year. The net impact (of this forecast) on the aggregate amounts of Non Transmission Services Revenue which National Grid NTS estimates would be earned in the Gas Year will be taken into account (where practicable) in the determination of General Non Transmission Services Charges for the relevant Gas Year

N. Invoicing

64. Conditional Product Non-Transmission Charges (entry and exit) will be invoiced and payable in accordance with UNC TPD Section S.

6 Impacts & Other Considerations

Does this modification impact a Significant Code Review (SCR) or other significant industry change projects, if so, how?

None

There could be some topics of discussion which may be discussed under Request 0705R⁷ - The Capacity Access Review, based on the outcome of this modification.

Consumer Impacts

There is likely to be impact on different consumer groups (e.g. those directly connected to the NTS who may not be a Shipper, Shippers, Distribution Networks, and ultimately end consumers). Due to the nature of potential bypass, in some circumstances it may not be a Shipper who would bypass and the charging relationship for capacity (and the responsibility to nominate for the conditional discounts) remains with the Shipper.

It should be noted that the allowed revenue collected by National Grid NTS will not change, only the parties that pay and in what quantity. The Gas Transportation Charges recover a set amount of monies from Users of the NTS and these allowed revenues are determined in line with National Grid's Licence. This Modification is proposing a set of changes whereby it places the most appropriate levels of charges on those accessing and using the NTS, this Modification also considers those where it may be more likely to bypass the NTS.

This Modification provides a discounted transportation charge for relevant Users at a subset of Exit points (fulfilling the relevant criteria) that will essentially require the value of the discount to be recovered from Users at those points not electing to or not in a position to incur the Conditional Discounts. This will seek to ensure that in a given Formula Year, the actual revenue recovered by National Grid is as close as possible to its allowed revenue by appropriate adjustments to the Scaling Factor, thereby minimising the value of any Revenue Recovery Charges.

The precise nature of how the User recovers the transportation charges it pays to National Grid NTS is dependent upon the downstream contractual arrangements Users have in place with their various counterparties. This may vary between individual Users.

Due to the complex arrangements highlighted above, it is prudent from The Proposer's perspective to highlight the general picture for the impacts. This high-level impact is highlighted in Section 3 and the analysis contained in the Appendix.

If any changes proposed impact the commercial arrangements between parties this will be for them to consider and how charges are ultimately levied to their customers.

Cross Code Impacts

None

EU Code Impacts

EU Tariff Code compliance (in respect of the proposed Conditional Discounts) is considered as part of this Modification.

Central Systems Impacts

There will be impacts on Gemini and UK Link invoicing systems. These impacts are being assessed.

7 Relevant Objectives

lm	Impact of the modification on the Relevant Objectives:			
Re	elevant Objective	Identified impact		
a)	Efficient and economic operation of the pipe-line system.	None		
b)	Coordinated, efficient and economic operation of	None		
	(i) the combined pipe-line system, and/ or(ii) the pipe-line system of one or more other relevant gas transporters.			
c)	Efficient discharge of the licensee's obligations.	Positive		
d)	Securing of effective competition: (i) between relevant shippers;	Positive		
	(ii) between relevant suppliers; and/or(iii) between DN operators (who have entered into transportation arrangements with other relevant gas transporters) and relevant shippers.			
e)	Provision of reasonable economic incentives for relevant suppliers to secure that the domestic customer supply security standards are satisfied as respects the availability of gas to their domestic customers.	None		
f)	Promotion of efficiency in the implementation and administration of the Code.	None		
g)	Compliance with the Regulation and any relevant legally binding decisions of the European Commission and/or the Agency for the Co-operation of Energy Regulators.	None		

Demonstration of how the Relevant Objectives are furthered:

c) Efficient discharge of the licensee's obligations.

The proposed changes to the UNC support the implementation of the new NTS Conditional Discounts. Standard Special Condition A5(5) of the NTS Licence sets outs the relevant methodology objectives and The Proposer believes that these objectives are better facilitated for the reasons detailed below (Relevant Charging Methodology Objectives: Demonstration of how the Relevant Objectives are furthered)

d) Securing of effective competition between relevant shippers;

The proposed changes to the UNC support the implementation of the new NTS Conditional Discounts. To the extent that this charge is expected to provide an incentive for large consumers located close to NTS points of entry to utilise (or continue to utilise) the NTS thereby enhancing effective competition. The inclusion of a discount to both Transmission Services Capacity Charges and Non-Transmission Services Commodity Charges ensures that all costs relating to the construction and the operation of a bypass pipeline are properly represented On the basis that large consumers will consider the **total costs** of using the NTS when assessing the economic case for constructing and operating a bypass pipeline, this Modification will minimise inefficient NTS bypass to the benefit of competition.

Impact of the modification on the Relevant Charging Methodology Objectives:			
Relevant Objective	Identified impact		
a) Save in so far as paragraphs (aa) or (d) apply, that compliance with the charging methodology results in charges which reflect the costs incurred by the licensee in its transportation business;	Positive		
 aa) That, in so far as prices in respect of transportation arrangements are established by auction, either: (i) no reserve price is applied, or (ii) that reserve price is set at a level - 	Positive		
 (I) best calculated to promote efficiency and avoid undue preference in the supply of transportation services; and (II) best calculated to promote competition between gas suppliers and between gas shippers; 			
b) That, so far as is consistent with sub-paragraph (a), the charging methodology properly takes account of developments in the transportation business;	Positive		
c) That, so far as is consistent with sub-paragraphs (a) and (b), compliance with the charging methodology facilitates effective competition between gas shippers and between gas suppliers; and	Positive		
None			
e) Compliance with the Regulation and any relevant legally binding decisions of the European Commission and/or the Agency for the Co-operation of Energy Regulators.	Positive		

This Modification proposal does not conflict with:

- (i) Paragraphs 8, 9, 10 and 11 of Standard Condition 4B of the Transporter's Licence; or
- (ii) Paragraphs 2, 2A and 3 of Standard Special Condition A4 of the Transporter's Licence;

as the charges will be changed at the required times and to the required notice periods.

Demonstration of how the Relevant Objectives are furthered:

a) Save in so far as paragraphs (aa) or (d) apply, that compliance with the charging methodology results in charges which reflect the costs incurred by the licensee in its transportation business;

The discussions under Request 0670R identified that it would be beneficial to have a product that helps manage potential inefficient bypass through the charging framework. Request 0670R is not closed at the time of this Modification. However, the Proposer expects this Modification will form the basis of further discussions on managing inefficient bypass via charging through industry discussions into the future.

Relevant Charging Methodology objective (a) is furthered by the introduction of a product that assists in providing an option to those more likely to consider a bypass of the NTS. This, therefore, provides a Charging Framework that is to the benefit of all Users by providing the infrastructure to access and use, maximising its use for all parties, limiting any additional costs (i.e. bypass costs) passing into the market and ultimately on to consumers. It also minimises the levels of charges associated to revenues that would still be charged via Transportation Charges for any potential underutilised parts of the network (as a result of bypass). Therefore, this is more 'cost-reflective' as it does provide a **fully** costed option over a bypass, thereby, should parties continue to use the NTS, they contribute towards the NTS Costs and therefore do

not result in the whole amount being levied on other Users (i.e. If they did bypass and not contribute to the NTS at all, all costs would be socialised).

The inclusion of discounts to both Transmission Services Capacity Charges and Non-Transmission Services Commodity Charges means that the total product costs incurred by Users is more cost reflective than an approach which excludes one or other of the charging methods.

b) That, so far as is consistent with sub-paragraph (a), the charging methodology properly takes account of developments in the transportation business;

The proposed methodology relating to Transmission Services considers developments which have taken place in the transportation business, in particular that the network is no longer expanding.

The product proposed uses more up to date costing assessments from a recent CEER review and publication. It also takes on board elements from PARCA timelines to help inform the build period.

The Non-Transmission Services element of the product builds on the distance-based method embedded in the derivation of the Transmission Services discount and similarly links into the costs borne by National Grid for the provision of operational services

In putting this product in place, with more up to date costs that provides an even level of access, this considers the updated Charging Framework to be delivered under the revised Methodology and also how the network is accessed and used. This provides an alternative to bypass for those within a specific distance informed by several factors, where it is economic to do so.

This, the Proposer believes, takes into account the changing nature of how Users wish to access the NTS, and a desire to make the NTS an attractive option for those who may be more likely to consider a bypass, to use the existing NTS infrastructure.

Given the nature of cross subsidies inherent with any methodology that affords some discounts or alternative treatment (e.g. exemptions) this is also a factor that needs to be reflected on. Any amount, effectively not charged on one User, will be borne by another. In the case of the conditional discounts the amount of the discount is by default levied on those ineligible. By limiting the level of this amount, this provides a well-used NTS, competition amongst Users and avoids potential costs being levied. These could include charges to recover the revenues associated to the potentially underutilised part of the network (in the event of a bypass) onto those who will pay NTS Transportation Charges. It could also include any costs of a bypass that, would in some way be charged to a set of consumers in the wider market. By striking the balance with the application of the conditional discounts this minimises any undue levels of charges levied onto those ineligible for this product.

c) That, so far as is consistent with sub-paragraphs (a) and (b), compliance with the charging methodology facilitates effective competition between gas shippers and between gas suppliers

This Modification recognises the different Users of the NTS. Some Users, particularly those with direct or indirect links to the direct connections to the NTS that are near to an Entry Point, may actively consider a bypass to the NTS if it is, all things considered, economic and commercially preferable to do so. This Modification which builds on the UNC baseline will put in place a methodology for those Users who are considered more likely to bypass the NTS and provide an option to use the NTS in place of a bypass pipeline.

This option is available for them to factor into decision-making processes as it would not be the only consideration in a bypass decision. This Modification therefore furthers this objective as it provides an option for those Users who are more likely to consider a bypass based on construction and operational costs and payback periods versus Transportation charges. It will, therefore, provide effective competition

on access and use of the NTS. This Modification assumes that any discount does make its way to the end connectee who may pay for access to the NTS via a Shipper.

e) Compliance with the Regulation and any relevant legally binding decisions of the European Commission and/or the Agency for the Co-operation of Energy Regulators.

The Proposer believes that this Modification is also compliant with EU Tariff Code Article 4 (2) which states "Transmission tariffs may be set in a manner as to take into account the conditions for Firm Capacity products.". This Transmission Service conditional discount is on unutilised Firm Capacity only. Any utilised Firm and any non-firm Capacity is ineligible for a discount. This also does not create any undue cross subsidy for other Users with the use of limiting factors such as the accessibility and eligibility of the product and that if the capacity is not utilised then there is no discount.

In relation to the Non-Transmission Services discount, the Proposer believes that it is compliant with EU Tariff Code Article 4 (4) which does not preclude the application of different commodity charges for the purposes of recovering Allowed Revenue. Further, it requires that the tariffs should be cost reflective, non-discriminatory, objective and transparent. Were this Modification not implemented it seems clear that the Non-Transmission Services Commodity Charge which would be levied on Users of an eligible route would result in tariffs which are neither cost-reflective nor non-discriminatory.

8 Implementation

In order to maintain an appropriate mechanism within the NTS Charging Methodology to dis-incentivise bypass of the NTS, in practice achieved by a seamless transition between the existing NTS Optional Commodity Rate and the Conditional Capacity Charge and Commodity Charge Discounts advocated by this Modification.

Implementation is proposed to take effect concurrent with the introduction of the revised Methodology, i.e. 01 October 2020, however implementation will be in line with any Ofgem direction.

9 Legal Text

Text Commentary

Legal Text will be provided here: https://www.gasgovernance.co.uk/0728/text

10 Recommendations

Proposer's Recommendation to the Authority

The Authority is asked to:

Agree this Modification should be treated as an Alternative to Modification 0728 and that it should proceed as such under the same timetable as that agreed by the Authority for Modification 0728 as far as is practicable.

11 Appendix - Analysis

Introduction

- 1. The following analysis has been completed by South Hook Gas (SHG) in support of Modification 0728A8. It is intended to provide additional information regarding analysis and figures quoted in the Modification text.
- 2. Due to the commercially sensitive nature of NTS Optional Commodity Charge (NTS OCC), National Grid provided data on an aggregate level to allow for analysis to be conducted. Therefore, all data corresponding to the existing NTS OCC and any subsequent charges arising from the analysis will be presented at an aggregated level.
- 3. Where relevant, the analysis uses the Modification 0678 V3.1 CWD Transmission Services Sensitivity Model⁹. This is an illustrative model and should always be considered as such. It provides support to Modification 0678A Modification and is a sensitivity tool to demonstrate the way in which charges under Modification 0678A would be calculated, and as a result the same consideration should be taken when reviewing this Optional Charge analysis.
- 4. This analysis is structured in the following way:
 - (a) Description of the assumptions that have been made in order to carry out a consistent method of analysis
 - (b) Some non-Modification specific analysis related to actions raised in Review Modification 0670R Workgroup.
 - (c) Analysis of optional charge proposed, which consists of:
 - an assessment of the number of routes applicable
 - ii. the potential under recovery of transmission services and non-transmission services revenues the specified charges could generate
 - iii. the indicative impact this could have on reference and reserve prices for the relevant Reference Price Methodology (RPM) and the same approach on non-transmission charges.

Assumption

- 5. In order to carry out the analysis on the prevailing NTS OCC and this proposal in a consistent manner, the following assumptions or limitations have been made:
 - (a) Users and routes based on NTS OCC historical flows and revenues from October 2017 to September 2018 (Gas Year 2017/18), replicating Gas Year format of the sensitivity tool.
 - (b) Assessment is undertaken at NTS OCC route level basis, not shipper level.
 - (c) Assessment is undertaken against Modification 0678A as a base case.
 - (d) No behavioural changes are assumed. All NTS OCC routes and flows used during Gas Year 2017/18 are considered to use any new optional charge proposed, on the condition the charge is less than the prevailing firm RPM entry and exit prices.

⁸ https://www.gasgovernance.co.uk/livemods

⁹ https://www.gasgovernance.co.uk/index.php/0678/Models

- (e) No consideration is given between Users of the proposed optional charges and Users that hold Existing Contracts. Where reference prices are referred to, these are prices from the Sensitivity Model, set to the parameters defined in Modification 0678A and calculated based on Gas Year 2020/21, with any over or under recovery recycled until the initial Revenue Recovery Charge (RRC) is set at zero.
- (f) For the purpose of this assessment, the Forecasted Contracted Capacity (FCC) as defined in the FCC Methodology Statement¹⁰ is considered to be 100% accurate.
- (g) For the purpose of calculating adjustments within the sensitivity model, perfect foresight of applicable quantities for the optional charge is assumed in order to give indicative reserve price increases to account for optional charge under recovery.
- (h) Any further modification specific sensitivity analysis or assumptions are stated where necessary

Comparison of Prevailing and Alternative Products

- 6. Rates were first calculated by the Sensitivity Tool using parameters defined by Modification 0678A for the gas year October-2020 Sep -2021On this baseline, several scenarios were then run.
- 7. First, we assessed the impact if all Users of the current NTS Optional Commodity Charge (NTS OCC) bypassed the NTS entirely. While this scenario is not supported by the likelihood of bypass analysis carried out it gives us a useful set of data to validate against.

	Prevailing NTS OCC
OCC Contribution	£28,695,987.33
Potential TO Socialisation	£97,559,664.09
TO Socialisation as % of MAR	12.9%
SO Socialisation	£57,983,030.86
SO Socialisation as % of MAR	7.7%
Total Socialisation as % of MAR	24.4%
Routes Considered	37
Max Effective Rate Discount	99.3%
Longest Route Considered	244.0

- 8. The 24.4% quoted in the Modification text relates to the total contribution loss of those sites currently using the prevailing NTS OCC, i.e. the total of their contribution under the NTS OCC and the difference between their NTS OCC contributions and the figures they would be paying if no such product existed.
- 9. This Modification sets a distance cap at 18km based on the likelihood of bypass analysis detailed below. The Maximum Discount applied to be applied to Transmission charges will be 90% at 0km. In addition, a discount of 80% is applied to Non-Transmission Services Commodity Charges is applied to flows along the eligible routes.

 UNC 0728A (Urgent)
 Page 34 of 51
 Version 2.0

 Modification
 12 June 2020

https://gasgov-mst-files.s3.eu-west-1.amazonaws.com/s3fs-public/ggf/book/2019-03/Forecasted%20Contracted%20Capacity%20v1.0.pdf

_		
	Prevailing OCC	
OCC Contribution	£28,695,987.33	
Potential TO Socialisation	£97,559,664.09	
TO Socialisation (as % of MAR)	12.9%	
SO Socialisation	£57,983,030.86	
SO Socialisation (as % of MAR)	7.7%	
Total Socialisation (as % of MAR)	24.4%	
Routes Considered	37	
Max Effective Rate Discount	99.3%-	
BLANK	BLANK-	
Longest Route Considered	244.0km	

	SHG Discount Proposal	
Conditional Discount Contribution	£12,599,653.97	
Potential TS Socialisation	£54,825,410.84	
TS Socialisation (as % of MAR)	7.2%	
Non-TS Socialisation	£18,668,769.70	
Non-TS Socialisation (as % of MAR)	8.8%	
Total Socialisation (as % of MAR)	7.6% 7.2%	
Routes Considered	17	
Max Effective TS Discount	90.0%	
Max Effective Non-TS Discount	80.0%	
Longest Route Considered	17.7km	

10. Based on this Modification, a distance cut-off at 18km, the routes which fall within the distance are as follows:

Entry Point	Exit Point	Straight- Line Distance (km)	Calculated Discount
Bacton IP	Bacton (BBL)	0.0	90%
Bacton IP	Bacton (Great Yarmouth)	0.0	90%
Bacton IP	Bacton (IUK)	0.0	90%
Bacton UKCS	Bacton (BBL)	0.0	90%
Bacton UKCS	Bacton (Great Yarmouth)	0.0	90%
Bacton UKCS	Bacton (IUK)	0.0	90%
Barrow	Barrow (Black Start)	0.0	90%
Barrow	Roosecote Power Station (Barrow)	0.0	90%
Burton Point	Burton Point (Connahs Quay)	0.0	90%

Steen	List (Callindary (and any)	Harffall Barras Otalia		000/
Moffat (Irish Interconnector) Moffat (Irish Interconnector) 0.0 90% St Fergus Apache (Sage Black Start) 0.0 90% St Fergus St. Fergus (Shell Blackstart) 0.0 90% St Fergus St. Fergus (Shell Blackstart) 0.0 90% St Fergus St. Fergus_Segal 0.0 90% Teesside Air_Products (Teesside) 0.0 90% Teesside Brine Field (Teesside) Power Station 0.0 90% Teesside Phillips Petroleum, Teesside 0.0 90% Teesside Seal Sands TGPP 0.0 90% Teesside Teesside Hydrogen 0.0 90% Teesside Teesside (BASF, aka BASF Teesside) 0.0 90% Mifford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% <td< td=""><td>Hatfield Moor (onshore)</td><td>Hatfield Power Station</td><td>0.0</td><td>90%</td></td<>	Hatfield Moor (onshore)	Hatfield Power Station	0.0	90%
St Fergus Apache (Sage Black Start) 0.0 90% St Fergus St. Fergus (Peterhead) 0.0 90% St Fergus St. Fergus (Shell Blackstart) 0.0 90% St Fergus St. Fergus_Segal 0.0 90% Teesside Air_Products (Teesside) 0.0 90% Teesside Brine Field (Teesside) Power Station 0.0 90% Teesside Phillips Petroleum, Teesside 0.0 90% Teesside Seal Sands TGPP 0.0 90% Teesside Teesside Hydrogen 0.0 90% Teesside Teesside (BASF, aka BASF Teesside) 0.0 90% Milford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Hanwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside	Isle of Grain	Grain Power Station	0.0	90%
St Fergus St. Fergus (Peterhead) 0.0 90% St Fergus St. Fergus (Shell Blackstart) 0.0 90% St Fergus St_Fergus_Segal 0.0 90% Teesside Air_Products (Teesside) 0.0 90% Teesside Brine Field (Teesside) Power Station 0.0 90% Teesside Phillips Petroleum, Teesside 0.0 90% Teesside Seal Sands TGPP 0.0 90% Teesside Teesside Hydrogen 0.0 90% Teesside Teesside (BASF, aka BASF Teesside) 0.0 90% Milford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Einron Billingham 4.4 58% Teesside <t< td=""><td>Moffat (Irish Interconnector)</td><td>Moffat (Irish Interconnector)</td><td>0.0</td><td>90%</td></t<>	Moffat (Irish Interconnector)	Moffat (Irish Interconnector)	0.0	90%
St Fergus St. Fergus (Shell Blackstart) 0.0 90% St Fergus St_Fergus_Segal 0.0 90% Teesside Air_Products (Teesside) 0.0 90% Teesside Brine Field (Teesside) Power Station 0.0 90% Teesside Phillips Petroleum, Teesside 0.0 90% Teesside Seal Sands TGPP 0.0 90% Teesside Teesside Hydrogen 0.0 90% Teesside Teesside (BASF, aka BASF Teesside) 0.0 90% Milford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside	St Fergus	Apache (Sage Black Start)	0.0	90%
St Fergus St_Fergus_Segal 0.0 90% Teesside Air_Products (Teesside) 0.0 90% Teesside Brine Field (Teesside) Power Station 0.0 90% Teesside Phillips Petroleum, Teesside 0.0 90% Teesside Seal Sands TGPP 0.0 90% Teesside Teesside Hydrogen 0.0 90% Teesside Teesside (BASF, aka BASF Teesside) 0.0 90% Milford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grai	St Fergus	St. Fergus (Peterhead)	0.0	90%
Teesside Air_Products (Teesside) 0.0 90% Teesside Brine Field (Teesside) Power Station 0.0 90% Teesside Phillips Petroleum, Teesside 0.0 90% Teesside Seal Sands TGPP 0.0 90% Teesside Teesside Hydrogen 0.0 90% Teesside Teesside (BASF, aka BASF Teesside) 0.0 90% Milford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9	St Fergus	St. Fergus (Shell Blackstart)	0.0	90%
Teesside Brine Field (Teesside) Power Station 0.0 90% Teesside Phillips Petroleum, Teesside 0.0 90% Teesside Seal Sands TGPP 0.0 90% Teesside Teesside Hydrogen 0.0 90% Teesside Teesside (BASF, aka BASF Teesside) 0.0 90% Milford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9	St Fergus	St_Fergus_Segal	0.0	90%
Teesside Phillips Petroleum, Teesside 0.0 90% Teesside Seal Sands TGPP 0.0 90% Teesside Teesside Hydrogen 0.0 90% Teesside Teesside (BASF, aka BASF Teesside) 0.0 90% Milford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby) Blackstart) 6.7	Teesside	Air_Products (Teesside)	0.0	90%
Teesside Seal Sands TGPP 0.0 90% Teesside Teesside Hydrogen 0.0 90% Teesside Teesside (BASF, aka BASF Teesside) 0.0 90% Milford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Teesside	Brine Field (Teesside) Power Station	0.0	90%
Teesside Teesside Hydrogen 0.0 90% Teesside Teesside (BASF, aka BASF Teesside) 0.0 90% Milford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby Blackstart) 6.7 45%	Teesside	Phillips Petroleum, Teesside	0.0	90%
Teesside Teesside (BASF, aka BASF Teesside) 0.0 90% Milford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby) Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby)	Teesside	Seal Sands TGPP	0.0	90%
Milford Haven Upper Neeston (Milford Haven Refinery) 0.2 89% Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby) Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Teesside	Teesside Hydrogen	0.0	90%
Burton Point Deeside 0.4 87% Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Teesside	Teesside (BASF, aka BASF Teesside)	0.0	90%
Milford Haven Pembroke Power Station 0.8 83% Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby) Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Milford Haven	Upper Neeston (Milford Haven Refinery)	0.2	89%
Isle of Grain Medway (aka Isle of Grain Power Station, NOT Grain Power) 1.0 81% Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Burton Point	Deeside	0.4	87%
Burton Point Harwarden (Shotton, aka Shotton Paper) 1.3 79% Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Milford Haven	Pembroke Power Station	0.8	83%
Teesside Billingham ICI (Terra Billingham) 4.4 58% Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Isle of Grain	Medway (aka Isle of Grain Power Station, NOT Grain Power)	1.0	81%
Teesside Enron Billingham 4.4 58% Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Burton Point	Harwarden (Shotton, aka Shotton Paper)	1.3	79%
Teesside Zeneca (ICI Avecia, aka 'Zenica') 4.4 58% Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Teesside	Billingham ICI (Terra Billingham)	4.4	58%
Isle of Grain Middle Stoke (Damhead Creek, aka Kingsnorth Power Station) 4.5 57% Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Teesside	Enron Billingham	4.4	58%
Burton Point Shotwick (Bridgewater Paper) 4.9 55% Hatfield Moor (onshore) Eastoft (Keadby Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Teesside	Zeneca (ICI Avecia, aka 'Zenica')	4.4	58%
Hatfield Moor (onshore) Eastoft (Keadby Blackstart) 6.7 45% Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Isle of Grain	Middle Stoke (Damhead Creek, aka Kingsnorth Power Station)	4.5	57%
Hatfield Moor (onshore) Eastoft (Keadby) 6.7 45%	Burton Point	Shotwick (Bridgewater Paper)	4.9	55%
	Hatfield Moor (onshore)	Eastoft (Keadby Blackstart)	6.7	45%
Hatfield Moor (onshore) KEADBY_2 PS 10.2 30%	Hatfield Moor (onshore)	Eastoft (Keadby)	6.7	45%
	Hatfield Moor (onshore)	KEADBY_2 PS	10.2	30%

Isle of Grain	Stanford Le Hope (Coryton)		20%
Hatfield Moor (onshore)	West Burton Power Station		11%
Easington	Stallingborough	17.7	11%

- 11. Of these, seventeen routes are considered in this analysis. The other routes which fall within this distance limitation have a zero figure in either Entry Firm FCC, Exit Firm FCC, MNEPOR or current Throughput which will mean the route is not considered in the analysis as no discount would be applicable.
- 12. The Cross-subsidy figures for considered routes which fall within the distance splits below are as follows:
 - (a) Transmission Services

Distance	Cross Subsidy	% MAR	Cumulative	% MAR
<= 1km	£52,000,208.26	6.87%	£52,000,208.26	6.87%
1km - 5km	£2,414,467.73	0.32%	£54,414,675.99	7.19%
5km - 18km	£441,435.17	0.06%	£54,856,111.15	7.25%

(b) Non-Transmission Services

Distance	Cross Subsidy	% MAR	Cumulative	% MAR
<= 1km	£17,690,268.67	8.32%	£17,690,268.67	8.32%
1km - 5km	£824,000.87	0.39%	£18,514,269.54	8.71%
5km - 18km	£154,500.16	0.07%	£18,668,769.70	8.78%

- N.B. Non-Transmission services figures above have been derived by taking the Transmission Services ratios and applying them to the Non-Transmission services cross subsidy.
- 13. The presence of Existing Contracts at Entry, or traded capacity are both Entry and Exit is not considered in this analysis. These volumes can be used to enable discounts at the opposing end of the route they relate to, but will not be considered for Discount themselves, as detailed in the Modification text. As a result, the figures quoted are "worst case". Over time, the expiry of Existing Contracts and changes to booking and trading behaviours is expected to bring the figures closer to expectation.
- 14. The impact of each of these scenarios could potentially have on the Postage Stamp and Non-Transmission Commodity rates calculated under this Modification 0728A is detailed below. In terms of Transmission Charges a figure has been provided which refers to an equivalent Revenue Recovery Charge.

	0678A RRC	0678A Forecast Non- Transmission Services Commodity Rate	Proposal Transmission Services Entry RRC Rate	Proposal Transmission Services Exit RRC Rate	Proposal Incremental Non- Transmission Services Commodity Rate
Rate	0	0.0138	0.00291	0.00128	0.0013

15. To appreciate the impact on customers, the following table sets out how the RRC rates and incremental Non-Transmission Services charges translate into costs for a typical domestic customer with an annual consumption of 12,000 KWh¹¹ and a capacity requirement of 107 KWh/d. Based on BEIS published statistical data sets, average gas bills for a domestic customer of this size was £550 p.a.in 2019.

	NTS Exit Capacity	NTS Entry Capacity	Non- Transmis sion Total	Forecast RRC Exit	Forecast RRC Entry	Forecast Incremen tal Non- Transmis sion Services	Total Exit Only	Total Entry and Exit
Annu al Cost	£6.87	£16.09	£3.31	£0.50	£1.13	£0.31	£0.65	£1.94

Likelihood of Bypass

- 16. In assessing the routes which posed a genuine threat of bypass we have used a set of data published by the Council of European Energy Regulators.¹²
- 17. From this report, we have taken the formula below as the option presented which "defines better the costs at both ends of the graph, so for small diameters and large diameters":

Pipeline Construction Cost (€/km) = 642.985 D^2 (") + 2,464.295 D (") + 398,135.326

Where D is the pipe diameter in inches.

18. To calculate the pipe diameter for a range of routes we have used the General Flow Equation as below:

_

¹¹ Figure from Ofgem https://www.ofgem.gov.uk/system/files/docs/2020/03/bills_prices_profits - march_2020.pdf

¹² https://www.ceer.eu/1767

$$D = \left(\frac{10^4}{7.574} * \frac{Q\sqrt{K}}{E}\right)^{0.4} * \left(\frac{Ps}{Ts}\right)^{0.4} * \left(\frac{S * L * Z * T}{P1^2 - P2^2}\right)^{0.2}$$

Where:

D is the pipe diameter in mm (to be converted to inches)

Q is the Flow in mscmd, we have used the current MNEPOR as at 31/01/2020

K is the Friction Factor

E is the Efficiency of the pipe (assumed to be 1.0 for a new, perfectly efficient pipe)

Ps is Standard Pressure

T_s is Pipe Average Temperature

S is the Specific Gravity of Gas

L is the Length of Pipe taken from the Distance Matrix as described below

Z is the Compressibility of Gas

T is Temperature

P₁ is the Inlet Pressure

P2 is the Outlet Pressure

All constants are taken from the current UNC TPD Section Y 2.5.2 - The Expansion Constant, effective to 30 September 2020. This section is used currently in reference to the Long Run Marginal Costs and will be removed from the UNC as part of the implementation of Modification 0678A.

- 19. This calculation uses two sets of distances. As part of Modification 0678 a Pipeline Distance Matrix was produced, providing point to point distances for all Entry and Exit Points using the NTS. The prevailing NTS Optional Commodity Charge uses a Matrix of Straight-line Distances created for any Entry and Exit Point currently opting to use the NTS OCC product. The use of Straight-line Distance is proposed in Modification 0728A but these distances are not currently available for all sites. In this calculation, we have used the minimum of the distances currently available for each route.
- 20. For each potential route a pipe diameter in mm was calculated based on the General Flow Equation, the constants held in Section Y prior to implementation of Modification 0678A, the MNEPOR and the Distance as described above.
- 21. Each calculated diameter has been scaled up to the next available standard pipe diameter as the minimum size of pipe required to supply the Exit Point at the Maximum Daily Offtake Rate.
- 22. These diameters have been converted from millimetres to inches by dividing by 25.4.
- 23. This Diameter has been fed in to the CEER equation to produce a cost in EUR for each route.
- 24. The EUR cost has been divided by 1.1748 to give a cost in GBP based on the currency conversion rate¹³ at the time this analysis was produced in January 2020.
- 25. Separate to this, based on the timescales cited in the PARCA process, approximate construction timescales were calculated for each route based on the distance and the pipe size. The minimum time scale quoted, 12 months, has been attributed to a 0km distance for the smallest standard pipe diameter, 50mm. The longest time scale quoted, 90 months, has been attributed to a 50km section of

¹³ https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/855436/exrates-monthly-0120.csv/preview

- the largest standard diameter of pipe, 1220mm. Timescales for distances and pipe sizes between these extremes have been scaled accordingly.
- 26. A construction timescale figure, in whole months, has been calculated for each route.
- 27. Based on the MNEPOR, Entry & Exit Reserve Prices and construction timescale, a cost of using the NTS during the period the User is constructing their hypothetical bypass pipeline has been calculated.
- 28. The Pipeline Construction Costs and Interim NTS Usage Costs have been combined to give a figure for the route. Assuming a simple ten-year repayment period this figure has been divided by 10 to give an annual cost.
- 29. Using the MNEPOR and Entry & Exit Reserve Prices, an Annual NTS Cost has been calculated.
- 30. The ratio of these two figures defines the likelihood of a User choosing to bypass the NTS.
- 31. The highest ratio recorded was approximately 10:1, suggesting that the User with the highest likelihood of bypass, over ten years, would achieve a 90% reduction in transmission costs.
- 32. It is assumed that a ratio below 1:1 would never consider bypass as the repayment term would exceed 10 years.
- 33. Even above this ratio a User would have to consider the high levels of upfront capital cost, the long-term commitment to operational costs associated with the asset and the loss of access to the NTS increasing the uncertainty around supply security.
- 34. In addition to this, the longer the distance, the increased level of uncertainty when constructing a pipeline. The increased possibility of delays and additional costs cannot be accounted for but mean a route becomes less attractive as risk levels increase.
- 35. A subset of likely routes, once identified, was used to generate an Average Cost Driver linked to Surface Features and Special Construction requirements as detailed in Section 3.5 of the CEER.
- 36. Using grid references, each route was measured and using aerial photographs, significant surface features were identified and the cost factors detailed in "Table 3-2" were applied for the appropriate proportion of the distance.
- 37. An average factor for these routes, weighted by distance, was generated and fed back into the calculation to ensure the most reflective set of construction costs possible was produced.
- 38. It is important to highlight that while the CEER document provides a significant level of detail, as per section 3.9 "Factors for associated costs", it does not account for costs associated with any land purchases to enable the pipeline to be constructed.

Derivation of the Discount Curve

- 38. The likelihood of bypass, calculated using the CEER pipeline cost equation, provides us with a maximum discount level of 90%. It also suggests the shape of the discount provided, an inverse exponential curve.
- 39. Given that a 10% discount is available to all Users via the interruptible capacity option, a cut-off is proposed where the curve meets a 10% discount. Users can achieve a greater discount via an alternative method, so the product becomes irrelevant below 10%.
- 40. Based on Maximum Discount, an adjustment is made to the starting point of the curve
- 41. A constant, 1.6094, is fed into the equation to ensure that the Discount Curve meets the 10% lower threshold at the distance cap.
- 42. The likelihood of bypass analysis also suggests that it is more likely for Users within 17.7km to consider bypass, while Users beyond that point would be less likely to consider bypass. It should be recognised that the design of the product is generic in its nature and application and may not consider

- every possible specific scenario and can only assume that a new pipeline is necessary for each potential combination.
- 43. Based on this analysis a distance cap of 18km is proposed, being the longest distance likely to consider bypass, rounded up to the nearest whole kilometre.

Reassessment of the Distance Cap

- 44. As part of National Grids periodic review, National Grid may look to assess the level of socialisation generated by the product and how variations in the Distance Cap may affect levels of socialisation based on the latest Charging and FCC data.
- 45. National Grid will monitor the cross subsidy generated by the Distance Cap, this assessment requires the following inputs:
 - i) confirmation of the Maximum Discount. Expected to remain as 90% in line with the Likelihood of Bypass analysis
 - ii) confirmation of the Minimum Discount. Expected to remain 10% in line with the Interruptible Discount
 - iii) updated Maximum Allowed Revenue figure
 - iv) updates to the Entry & Exit FCC values based on latest calculated figure
 - v) updates to the Entry & Exit Reserve Prices for the Gas Year ahead
 - vi) the latest Optional Capacity Charges
 - vii) the Optional Capacity Charge associated Distance Matrix
- 46. From the updated Entry & Exit FCCs and the updated Optional Capacity Charge Throughput, an updated Forecasted Eligible Quantity is created.
- 47. Based on a set range of distances, 5km increments from 5km to 75km, an estimated monetary Socialisation figure is calculated.
- 48. A graph and trendline can be plotted based on the data calculated
- 49. From these figures the current Socialisation can be calculated
- 50. Based on a change in the cross subsidy figure a request for a formal review may be triggered and, alongside industry input, the product will be reassessed for future viability.

Eligible Quantity Calculations

51. The Eligible Quantity Calculations for application of the Transmission Services Discount and the Non-Transmission Services Discount are detailed in the Business Rules. Below are a number of examples stepping through possible scenarios using the Business Rules.

Example 1 - Simple

Entry Point A

Date Booked	Source	Туре	kWh
01/01/2020	Auction	Firm	105,000
		Entry Flow	90,000

Exit Point 1

Date Booked	Source	Туре	kWh
01/01/2020	Auction	Firm	100,000
		Exit Flow	95,000

When considering Route A1, in accordance with BR35.1 we calculate the Initial Entry EQ as follows:

$$IEQEn = Max(0, (Min(CAPEn, CAPEx, AEn, AEx) - ECEn))$$

Substituting in the figures quoted the equation is as follows:

$$IEQEn = Max(0, (Min(105000, 100000, 90000, 95000) - 0))$$

IEQEn = 90,000 kWh

The AQ_{En} in this scenario, as defined in BR35.2 is 105,000 kWh and so, in accordance with BR35, the EQ_{En} is calculated as below:

EQEn = Min (IEQEn, AQEn)

EQEn = Min (90000, 105000)

 $EQEn = 90,000 \, kWh$

When considering Route A1, in accordance with BR36.1 we calculate the Initial Exit EQ as follows:

$$IEQEx = Min(CAPEn, CAPEx, AEn, AEx)$$

Substituting in the figures quoted the equation is as follows:

IEQEx = Min (105000,100000,90000,95000)

IEQEx = 90,000 kWh

The AQ_{Ex} in this scenario, as defined in BR36.2 is 100,000 kWh and so, in accordance with BR36 the EQ_{Ex} is calculated as below:

EQEx = Min(IEQEx, AQEx)

EQEx = Min (90000,100000)

EQEx = 90,000 kW

When considering Route A1, in accordance with BR61 we calculate the User Eligible Conditional Product Non-Transmission Quantity (UECPNTCQ) as follows:

 $UECPNTCQ = Min(A_{en}, A_{ex})$

UECPNTCQ = Min(90000,95000)

UECPNTCQ = 90,000 kWh

Example 2 - Existing Contract at Entry

Entry Point C

Date Booked	Source	Туре	kWh
01/04/2017	Auction	Existing	105,000
		Entry Flow	90,000

Exit Point 1

Date Booked	Source	Туре	kWh
01/04/2017	Auction	Firm	100,000
		Exit Flow	95,000

When considering Route C1, in accordance with BR35.1 we calculate the Initial Entry EQ as follows:

$$IEQEn = Max(0, (Min(CAPEn, CAPEx, AEn, AEx) - ECEn))$$

Substituting in the figures quoted the equation is as follows:

$$IEQEn = Max(0, (Min(105000, 100000, 90000, 95000) - 105000))$$

$$IEQEn = 0 kWh$$

The AQ_{En} in this scenario, as defined in BR35.2 is 0 kWh and so, in accordance with BR35 the EQ_{En} is calculated as below:

$$EQEn = Min (IEQEn, AQEn)$$

EQEn = Min(0,0)

EQEn = 0 kWh

When considering Route C1, in accordance with BR36.1 we calculate the Initial Exit EQ as follows:

$$IEQEx = Min(CAPEn, CAPEx, AEn, AEx)$$

Substituting in the figures quoted the equation is as follows:

$$IEQEx = Min (105000,100000,90000,95000)$$

$$IEQEx = 90,000 \, kWh$$

The AQ_{Ex} in this scenario, as defined in BR36.2 is 100,000 kWh and so, in accordance with BR36 the EQ_{Ex} is calculated as below:

$$EQEx = Min(IEQEx, AQEx)$$

$$EQEx = Min (90000,100000)$$

$$EQEx = 90,000 \, kWh$$

When considering Route C1, in accordance with BR61 we calculate the User Eligible Conditional Product Non-Transmission Quantity (UECPNTCQ) as follows:

$$UECPNTCQ = Min(A_{en}, A_{ex})$$

UECPNTCQ = Min(90000,95000)

UECPNTCQ = 90,000 kWh

Example 3 - Traded Capacity at Entry

Entry Point B

Date Booked	Source	Туре	kWh
01/01/2020	Trade	Firm	105,000
		Entry Flow	90,000

Exit Point 1

Date Booked	Source	Туре	kWh
01/01/2020	Auction	Firm	100,000
		Exit Flow	95,000

When considering Route B1, in accordance with BR35.1 we calculate the Initial Entry EQ as follows:

$$IEQEn = Max(0, (Min(CAPEn, CAPEx, AEn, AEx) - ECEn))$$

Substituting in the figures quoted the equation is as follows:

$$IEQEn = Max(0, (Min(105000,100000,90000,95000) - 0))$$

$$IEQEn = 90,000 kWh$$

The AQ_{En} in this scenario, as defined in BR35.2 is 0 kWh and so, in accordance with BR35 the EQ_{En} is calculated as below:

EQEn = Min (IEQEn, AQEn)

EQEn = Min (90,000,0)

EQEn = 0 kWh

When considering Route B1, in accordance with BR36.1 we calculate the Initial Exit EQ as follows:

$$IEQEx = Min(CAPEn, CAPEx, AEn, AEx)$$

Substituting in the figures quoted the equation is as follows:

IEQEx = Min (105000,100000,90000,95000)

 $IEQEx = 90,000 \, kWh$

The AQ_{Ex} in this scenario, as defined in BR36.2 is 100,000 kWh and so, in accordance with BR36 the EQ_{Ex} is calculated as below:

EQEx = Min(IEQEx, AQEx)

EQEx = Min (90000,100000)

 $EQEx = 90,000 \, kWh$

When considering Route B1, in accordance with BR61 we calculate the User Eligible Conditional Product Non-Transmission Quantity (UECPNTCQ) as follows:

 $UECPNTCQ = Min(A_{en}A_{ex})$

UECPNTCQ = Min(90000,95000)

UECPNTCQ = 90,000 kWh

Example 4 - Multiple Exit Points

Entry Point D

Date Booked	Source	Туре	kWh
01/01/2020	Trade	Firm	105,000
		Entry Flow	90,000

Exit Point 1

Date Booked	Source	Туре	kWh
01/01/2020	Auction	Firm	45,000
		Exit Flow	40,000

Exit Point 2

Date Booked	Source	Туре	kWh
01/01/2020	Auction	Firm	55,000
		Exit Flow	45,000

In accordance with BR37, where a User nominates two routes, to different Exit Points, but originating from the same Entry Point, we apportion the Entry Capacities (CAP_{En}) and Flows (A_{En})based on the ratio of Exit Capacities and Flows, i.e.

BR37.1
$$CAPEn1 = \frac{CAPEn}{CAPEx1 + CAPEx2} * CAPEx1 & CAPEx2 = \frac{CAPEn}{CAPEx1 + CAPEx2} * CAPEx2$$
BR37.4 $AQEn1 = \frac{AQEn}{CAPEx1 + CAPEx2} * CAPEx1 & AQEn2 = \frac{AQEn}{CAPEx1 + CAPEx2} * CAPEx2$
BR37.3 $AEn1 = \frac{AEn}{AEx1 + AEx2} * AEx1 & AEn2 = \frac{AEn}{AEx1 + AEx2} * AEx2$

Entry Point D to Exit Point 1

Туре	kWh
CAP _{En1}	47,250
AQ _{En1}	47,250
A _{En1}	42,353

Entry Point D to Exit Point 2

Туре	kWh
CAP _{En2}	57,750
AQ _{En2}	57,750
A _{En2}	47,647

When considering Route D1, in accordance with BR35.1 we calculate the Initial Entry EQ as follows:

$$IEQEn = Max(0, (Min(CAPEn, CAPEx, AEn, AEx) - ECEn))$$

Substituting in the figures quoted the equation is as follows:

$$IEQEn = Max(0, (Min(47250,45000,42353,40000) - 0))$$

$$IEQEn = 40,000 kWh$$

The AQ_{En} in this scenario, as defined in BR35.2 is 105,000 kWh (Firm Entitlement excluding Existing Contracts) once apportioned in-line with 37.4 the AQEn for the route is 47,250. In accordance with BR35 the EQ_{En} is calculated as below:

$$EQEn = Min (IEQEn, AQEn)$$

```
EQEn = Min (40000,47250)
```

$EQEn = 40,000 \, kWh$

When considering Route D1, in accordance with BR36.1 we calculate the Initial Exit EQ as follows:

```
IEQEx = Min(CAPEn, CAPEx, AEn, AEx)
```

Substituting in the figures quoted the equation is as follows:

```
IEQEx = Min (47250,45000,42353,40000)
```

$$IEQEx = 40,000 kWh$$

The AQ_{Ex} in this scenario, as defined in BR36.2 is 45,000 kWh and so, in accordance with BR36 the EQ_{Ex} is calculated as below:

```
EQEx = Min(IEQEx, AQEx)
```

EQEx = Min (40000,45000)

EQEx = 40,000 kWh

When considering Route D1, in accordance with BR61 we calculate the User Eligible Conditional Product Non-Transmission Quantity (UECPNTCQ) as follows:

```
UECPNTCQ = Min(A_{en}A_{ex})
```

UECPNTCQ = Min(90000,40000)

UECPNTCQ = 40,000 kWh

When considering Route D2, in accordance with BR35.1 we calculate the Initial Entry EQ as follows:

$$IEQEn = Max(0, (Min(CAPEn, CAPEx, AEn, AEx) - ECEn))$$

Substituting in the figures quoted the equation is as follows:

```
IEQEn = Max(0, (Min(57750,55000,47647,45000) - 0))
```

$$IEQEn = 45,000 \, kWh$$

The AQ_{En} in this scenario, as defined in BR35.2 is 105,000 kWh (Firm Entitlement excluding Existing Contracts) once apportioned in-line with 37.4 the AQEn for the route is 57,750. In accordance with BR35 the EQ_{En} is calculated as below:

```
EQEn = Min (IEQEn, AQEn)
```

$$EQEn = Min (45000,57750)$$

$EQEn = 45,000 \, kWh$

When considering Route D2, in accordance with BR36.1 we calculate the Initial Exit EQ as follows:

```
IEQEx = Min(CAPEn, CAPEx, AEn, AEx)
```

Substituting in the figures quoted the equation is as follows:

```
IEQEx = Min (57750,55000,47647,45000)
```

$$IEQEx = 45,000 \, kWh$$

The AQ_{Ex} in this scenario, as defined in BR36.2 is 55,000 kWh and so, in accordance with BR36 the EQ_{Ex} is calculated as below:

$$EQEx = Min(IEQEx, AQEx)$$

```
EQEx = Min (45000,55000)
```

$$EQEx = 45,000 \, kWh$$

When considering Route D2, in accordance with BR61 we calculate the User Eligible Conditional Product Non-Transmission Quantity (UECPNTCQ) as follows:

 $UECPNTCQ = Min(A_{en}, A_{ex})$

UECPNTCQ = Min(90000,45000)

 $UECPNTCQ = 45,000 \, kWh$

Example 5 - Complex

Entry Point E

,	Date Booked	Source	Туре	kWh
	01/04/2017	Existing	Firm	100,000
	01/01/2020	Auction	Firm	50,000
	01/04/2020	Auction	Interruptible	50,000
	01/07/2020	Trade	Firm	-20,000
			Entry Flow	170,000

Exit Point 1

Date Booked	Source	Туре	kWh
01/01/2020	Auction	Firm	50,000
01/04/2020	Auction	Interruptible	20,000
01/07/2020	Trade	Firm	-10,000
		Exit Flow	55,000

Exit Point 2

Date Booked	Source	Туре	kWh
01/01/2020	Auction	Firm	60,000
01/04/2020	Auction	Interruptible	30,000
01/07/2020	Trade	Firm	15,000
		Exit Flow	110,000

In accordance with BR37, where a User nominates two routes, to different Exit Points, but originating from the same Entry Point, we apportion the Entry Capacities and Flows based on the ratio of Exit Capacities (CAP $_{Ex}$) and Flows (A_{Ex}).

BR37.1
$$CAPEn1 = \frac{CAPEn}{CAPEx1 + CAPEx2} * CAPEx1 & CAPEx2 = \frac{CAPEn}{CAPEx1 + CAPEx2} * CAPEx2$$

BR37.2 $ECPEn1 = \frac{ECEn}{CAPEx1 + CAPEx2} * ECEx1 & ECEn2 = \frac{ECEn}{CAPEx1 + CAPEx2} * ECEx2$

BR37.4 $AQEn1 = \frac{AQEn}{CAPEx1 + CAPEx2} * CAPEx1 & AQEn2 = \frac{AQEn}{CAPEx1 + CAPEx2} * CAPEx2$

BR37.3 $AEn1 = \frac{AEn}{AEx1 + AEx2} * AEx1 & AEn2 = \frac{AEn}{AEx1 + AEx2} * AEx2$

Entry Point E to Exit Point 1

Type	kWh
CAP _{En1}	45,217
EC _{En1}	34,783
AQ _{En1}	17,391
A _{En1}	56,667

Entry Point E to Exit Point 2

Туре	kWh
CAP _{En2}	84,783
EC _{En2}	65,217
AQ _{En2}	32,609
A _{En2}	113,333

When considering Route E1, in accordance with BR35.1 we calculate the Initial Entry EQ as follows:

```
IEQEn = Max(0, (Min(CAPEn, CAPEx, AEn, AEx) - ECEn))
```

Substituting in the figures quoted the equation is as follows:

```
IEQEn = Max(0, (Min(45217,40000,56667,55000) - 34783))
```

```
IEQEn = 5,217 kWh
```

The AQ_{En} in this scenario, as defined in BR35.2 is 50,000 kWh (Firm Entitlement excluding Existing Contracts) once apportioned in-line with 37.4 the AQEn for the route is 17,391. In accordance with BR35 the EQ_{En} is calculated as below:

```
EQEn = Min (IEQEn, AQEn)
```

EQEn = Min (5217,17391)

EQEn = 5,217 kWh

When considering Route E1, in accordance with BR36.1 we calculate the Initial Exit EQ as follows:

```
IEQEx = Min(CAPEn, CAPEx, AEn, AEx)
```

Substituting in the figures quoted the equation is as follows:

```
IEQEx = Min (45217,40000,56667,55000)
```

IEQEx = 40,000 kWh

The AQ_{Ex} in this scenario, as defined in BR36.2 is 50,000 kWh and so, in accordance with BR36 the EQ_{Ex} is calculated as below:

```
EQEx = Min(IEQEx, AQEx)
```

EQEx = Min (40000,50000)

EQEx = 40,000 kWh

When considering Route E1, in accordance with BR62 we calculate the User Eligible Conditional Product Non-Transmission Quantity (UECPNTCQ) as follows:

```
UECPNTCQ = Min(A_{en}, A_{ex})
```

UECPNTCQ = Min(56667,55000)

UECPNTCQ = 55,000 kWh

When considering Route E2, in accordance with BR35.1 we calculate the Initial Entry EQ as follows:

```
IEQEn = Max(0, (Min(CAPEn, CAPEx, AEn, AEx) - ECEn))
```

Substituting in the figures quoted the equation is as follows:

```
IEQEn = Max(0, (Min(84783,75000,113333,110000) - 65217))
```

 $IEQEn = 9,783 \, kWh$

The AQ_{En} in this scenario, as defined in BR35.2 is 50.000 kWh (Firm Entitlement excluding Existing Contracts) once apportioned in-line with 37.4 the AQEn for the route is 32,609 kWh. In accordance with BR35 the EQ_{En} is calculated as below:

```
EQEn = Min (IEQEn, AQEn)
```

$$EQEn = Min (9783,32609)$$

$EQEn = 9,783 \, kWh$

When considering Route E2, in accordance with BR36.1 we calculate the Initial Exit EQ as follows:

```
IEQEx = Min(CAPEn, CAPEx, AEn, AEx)
```

Substituting in the figures quoted the equation is as follows:

```
IEQEx = Min (84783,75000,113333,110000)
```

$$IEQEx = 75,000 kWh$$

The AQ_{Ex} in this scenario, as defined in BR36.2 is 60,000 kWh and so, in accordance with BR36 the EQ_{Ex} is calculated as below:

```
EQEx = Min(IEQEx, AQEx)
```

EQEx = Min (75000,60000)

$EQEx = 60,000 \, kWh$

When considering Route E2, in accordance with BR62 we calculate the User Eligible Conditional Product Non-Transmission Quantity (UECPNTCQ) as follows:

```
UECPNTCQ = Min(A_{en}, A_{ex})
```

UECPNTCQ = Min(113333,110000)

UECPNTCQ = 110000,000 kWh

12 Appendix 3 – Comparison Table of Modifications 0728/A/B/C/D

		0728	0728A	0728B	0728C	0728D
		v1.0 (6/3/2020)	v1.0 (4/6/2020)	v1.0 (4/6/2020)	v1.0 (4/3/2020)	v1.0 (4/3/2020)
Charge Group	Element	National Grid	South Hook Gas Company	Vitol SA Geneva	RWE	ENI Trading & Shipping
	Charge which the discount is	Entry Capacity Reserve Price	Entry Capacity Reserve Price	Entry Capacity Reserve Price	Entry Capacity Reserve Price	Entry Capacity Reserve Price and
	applied to	and Exit Capacity Reserve Price	and Exit Capacity Reserve Price	and Exit Capacity Reserve Price	and Exit Capacity Reserve Price	Exit Capacity Reserve Price
	DCSL Distance (km)	18	18	28	18	5 (standard 90% discount)
Transmission Services	Initial Eligible Quantity	(Lower of Entry Capacity, Exit	(Lower of Entry Capacity, Exit	(Lower of Entry Capacity, Exit	(Lower of Entry Capacity, Exit	(Lower of Entry Capacity, Exit
Conditional Discount	(Entry)	Capacity, Entry Allocation, Exit	Capacity, Entry Allocation, Exit	Capacity, Entry Allocation, Exit	Capacity) less any Existing	Capacity, Entry Allocation, Exit
Conditional Discount		Allocation) less any Existing	Allocation) less any Existing	Allocation) less any Existing	Contract Capacity	Allocation) less any Existing
		Contract Capacity	Contract Capacity	Contract Capacity		Contract Capacity
	Initial Eligible Quantity (Exit)	Lower of Entry Capacity, Exit	Lower of Entry Capacity, Exit	Lower of Entry Capacity, Exit	Lower of Entry Capacity, Exit	Lower of Entry Capacity, Exit
		Capacity, Entry Allocation, Exit	Capacity, Entry Allocation, Exit	Capacity, Entry Allocation, Exit	Capacity	Capacity, Entry Allocation, Exit
		Allocation	Allocation	Allocation		Allocation
	Charge which the discount is	N/A	General Non-Transmission	N/A	N/A	General Non-Transmission Services
Non-Transmission	applied to		Services Charge			Charge
Services Conditional	Discount (%)	N/A	80	N/A	N/A	94
Discount	Eligible Quantity	N/A	Lower of Entry Allocation, Exit	N/A	N/A	Lower of Entry Allocation, Exit
			Allocation			Allocation

Variation in treatment of element from UNC Modification Proposal 0728