WWU Case Study Capacity Access Review

H

Bethan Winter

UTH

Introduction

- This case study focusses on Maelor Offtake
- Maelor feeds all of Wales North
 - Simple relationship between LDZ forecast and Offtake Capacity requirement
 - No flow swapping options for networks (NTS or WWU)
 - No ability to respond to cost drivers e.g. to follow cheaper capacity

Peak day forecasting in 2012

- Variability in the forecasts received from NTS for the steady progression scenario 2011, to 2012
- WWU flat-lined forecast in 2012 (consistent since 2010)
- Enduring bookings made against our forecast
 - Consistent forecast, enduring flat capacity and Section H data
 - User Commitment 2015/6 to 2018/9

Offtake Capacity Bookings

- As at 2012:
 - Baseline Obligation at Maelor
 - Prevailing Capacity booking
 - Forecasts for the next ten years

- 57,560,000 kwh
 - 46,429,409 kwh
 - 49,258,990 kwh
- Following approval of our new forecasts additional enduring capacity secured (within baseline):

-

- New capacity booking from (Y+3) 2015
- Section H planning data
- User commitment triggered from 2015/16 to 2018/19
- 49,258,990 kwh
- 4.5* mcm (equivalent)

* Note: Section H data is provided in mcm so can vary as a result of planning CVs

Peak day forecasting in 2018

- Variability between the NG and WWU forecasts
- User Commitment in the 1st year results in overbooking at Maelor for 2018/9
- Reductions to enduring not made for 2nd a subsequent years as opportunity to do that in 2019 and risks around increases at a later date resulting in UC

Section H information aligns to the WWU forecast

Summary

- Section H data is more accurate that commercial bookings in the event that:
 - Annual or daily may be used to top up enduring capacity
 - User commitment means we are unable to reduce capacity to reflect reductions in requirements

