NULL METER ERROR REPORT

FINAL

1. EXECUTIVE SUMMARY

SITE NAME		Saltwick			
LDZ		NO			
START DATE (actual)		12 th December 2016			
LAST GOOD DATE					
END DATE		12 th December 2016			
SIZE OF ERROR (No reconcilia required if under 0.1%)	ation	<0.1%			
ESTIMATE – Y/N?		Y			
ROOT CAUSE		A fault with the flow control valve.			
ANALYSIS		System operator data			
METER TYPE		Orifice plate			
AUTHOR		Piers Eldridge			
CHECKED BY		Ben Hanley			
ACCEPTED BY NGN NETWORK					
RECONCILIATION	Distribut	ion	Transportation		
	1				

2. BACKGROUND

The metering at Saltwick offtake consists of a single orifice plate meter with a gas chromatograph used for volume correction.

On 12th December 2016 at 16:27 an issue occurred with one of the volumetric regulators and the technician in attendance appeared to lack the relevant knowledge to rectify the fault resulting in the measurement stream being over ranged 13 times.

The fault was rectified by 17:55.

3. ERROR QUANTIFICATION AND IMPACT

The results of previous CP11 tests (differential pressure transmitter checks) were evaluated to determine an average saturation current of 20.715mA. The differential pressure transmitter was ranged from 0-500 mbar. Therefore, the saturation current is equivalent to a differential pressure of 522 mbar.

Although the meter was over ranged 13 times, the differential pressure data from system operator shows only two periods where the differential pressure appeared to increase above the transmitter saturation pressure. The two periods are shown in Figure 1.

Mokveld was consulted to calculate the maximum flowrates through the valve during the two periods of mismeasurement. The information from Mokveld is shown in the appendix A.

In the first period where the differential pressure transmitter was saturated the upstream pressure was 56.1 bar.g, the downstream pressure was 36.59 bar.g, the downstream temperature was 7.6° C and the valve position was at 74.65% of the stroke. This is labelled as case 1 in the calculations from Mokveld in Figure 2. Mokveld calculate the maximum flowrate in these conditions to be 525 000 kg/h

when the valve is fully open. The graph provided by Mokveld shows that the flowrate through the valve would be about 76% of the total capacity when the valve position is at 74.65% of the stroke. Therefore, the maximum flowrate through the valve in case 1 is 399 000 kg/h. The standard volumetric flowrate was calculated to be 145.35 sm³/s using an average composition that was measured during the meter error. The flowrate would produce a differential pressure of 617.4 mbar across the orifice plate. The calculation was done with an orifice bore 289.97mm of and pipe diameter of 433.451mm and is shown in Figure 3.

The flow rates between the data points have been modelled as parabolic. A parabolic equation was determined for each period which fits the existing data points and a nominal maximum flow rate. The data points for the first period where the differential pressure transmitter was saturated are shown in Table 1. The data from the control room is highlighted in bold. The other values are calculated from equation 1 which is the parabolic equation used to model the differential pressure. From the calculated differential pressure points, GasVLe was used to calculate the flow rates using the temperature, pressure and composition averaged for the corresponding period and another parabolic equation (equation 2) is calculated to model the flowrate. The standard volumetric flowrate equation was integrated from the point where the DP transmitter is not saturated, t2 to give the unmetered volume. This is shown in equation 3. If the maximum differential pressure during the first period where the differential pressure transmitter was saturated was 617.4 mbar the unmetered volume would be 537.2 sm³.

 $DP=-0.1678t^{2}+8.1884t+517.56$ (1 Where DP is differential pressure in mbar t is the time in seconds

 q_v =-0.0295t²+1.4103t+128.51 (2) Where q_v is the standard volumetric flowrate in sm³/s

$$Error = \int_{t1}^{t2} q_v dt$$

Seconds from Seconds from the first data transmitter Differential pressure Flowrate (sm^3/s) Time point saturation (mbar) 12/12/2016 16:39:08 49.0 517.03 Point where the DP transmitter 47.8 48.3 saturates 522.00 128.51 Nominal maximum flow rate 24.0 24.5 617.4 145.36 Point where the DP transmitter 0.0 is not saturated 0.5 521.45 128.51 12/12/2016 16:38:19 48.82 515.22

(3)

Table 1 The data points for the first period where the differential pressure transmitter was saturated.

In the second period where the differential pressure transmitter was saturated the upstream pressure was 49.63 bar.g, the downstream pressure was 38.11 bar.g, the temperature was 6.4°C and the valve position was at 79.25% of the stroke. This is

labelled as case 2 in the calculations from Mokveld in Figure 2. Mokveld calculate the maximum flowrate in these conditions is 447 000 kg/h when the valve is fully open. The graph provided by Mokveld shows that the flowrate through the valve would be about 82% of the total capacity when the valve position is at 79.25% of the stroke. Therefore, the maximum flowrate through the valve in case 1 is 366 540 kg/h. The standard volumetric flowrate was calculated to be 133.5 sm³/s using an average composition for the Northern network. The flowrate would produce a differential pressure of 596.8 mbar across the orifice plate. The calculation is shown in Figure 4.

The calculations were repeated for the second period where the differential pressure transmitter was saturated. The data points are shown in Table 2, the equation for the differential pressure is equation 4 and the equation for the volumetric flowrate is equation 5. Integrating equation 5 from t3 to t4 gives an unmetered volume of 165 sm^3 . Therefore, the total meter error would be 702.2 sm^3 .

 $DP = -0.1802t^2 + 8.1012t + 516.48 \tag{4}$

```
q_{v} = -0.012t^{2} + 0.5224t + 128.51  (5)
```

Time	Seconds from the first data point	Seconds from transmitter saturation	Differential pressure (mbar)	Flowrate (sm ³ /s)
12/12/2016 17:33:00		60.0	516.71	
Point where the DP transmitter				
saturates	43.6	44.3	522.00	128.51
Nominal maximum flow rate	29.3	30.0	596.80	133.53
Point where the DP transmitter				
is not saturated	0	0.7	522.00	128.51
12/12/2016 17:32:00		0.0	353.61	

Table 2 The data points for the second period where the differential pressure transmitter was saturated.

The daily volume on the 12th December 2016 was 2.6074 Msm³.

The total unmetered volume is 702.2 sm^3 and is below the 0.1% of daily volume threshold required for reconciliation.

4. CAUSES

The meter error was cause by a fault with one of the volumetric regulators and the technician in attendance appeared to lack the relevant knowledge to rectify the fault. The Mokveld ERS valve is approximately 25 years old and is no longer supported by Mokveld.

5. RECOMMENDATIONS AND LEARNING

Training of the network technicians should be extended to cover faults with the flow control valve.

REFERENCES

average composition.xlsx temperature and pressure.xlsx Saturation.xlsx MER.xlsx

VERSION HISTORY

Version	Changes	Author	Date
Rev 1	Original	Piers Eldridge	18/05/2017
Rev2	Sign off and Amended to NGN format	Ben Hanley	24/10/2018

DISTRIBUTION

Asset Owner Energy Performance Network Lead Group Asset Strategy

APPENDIX A

iii mokveld

Valve sizing calculation Axial control valve

Issue date 08/05/2017

v013

MESA rev013

File name

Version

Client			Mokveld ref.		
Project			Calculated by		
Client ref.			Tag number(s)		
Application			Pipe size NPS	8	in
Medium Natural gas			Wall thickness	0.5	in
PROCESS CONDITIONS			Case 1	Case 2	
Inlet pressure	P ₁	[barg]	56.1	49.63	3
Outlet pressure	P ₂	[barg]	36.59	38.11	
Flow rate	Q	[kg/hr]	525000	447000)
Inlet temperature	T ₁	[deg. C]	8	e	6
Outlet temperature	T ₂	[deg. C]	-2	1	
Density gas	Gg	[MW]	18.16	18.16	6
Specific heat ratio (C_p/C_v)	к	[-]	1.32	1.32	2
Compressibility in	Z ₁	[-]	0.88	0.89)
Compressibility out	Z ₂	[-]	0.91	0.91	
SIZING RESULTS					
Capacity required	Cv	[-]	792	853	3
% of selected capacity		[%]	76	82	2
Turndown ratio		[-]	1:233	1:251	
Valve recovery factor	F	[-]	0.77	0.77	
Valve outlet velocity	v	[m/s]	138	114	i.
na ny manazona azaki saka da kalakin kara marana kana kana kara kara kara kara kara		[Mach]	0.36	0.29)
Sound Pressure Level	SPL	[dBA]	104	100)

Northern Gas Networks NO011 - Saltwick MER v1.0.doc

© Advantica Limited 200	2	Orifice Plat	e Nesian Calcul	ations	GaeWi e Add in versie	n 3.6 · Coo\/l o.v6.1 · 17 Mov	2017 Llear: BIEL LOUI
	ਾ ntities are showr	n in blue	Corrected inputs	Calcula	ation options	Calculation	results
Gas Composition	nitrogen	0.925699	0.9257	Equation of	AGA8		
	carbon dioxide	1.807321	1.8073	State		Т	8 C
	methane	90.06426	90.0641			Р	56.099998 bar
	ethane	5.271119	5.2711	Viscosity	NBS 🚽	Mass density	50.644196 kg/m ³
	propane	1.426467	1.4265	· · · ·		Isentropic index	1.3475449
	i-butane	0.162113	0.1621			Viscosity	0.0121056 mPa.s
	n-butane	0.234711	0.2347	CV	15°C / 15°C 🗸	CV	39.531891 MJ/m ³
	neo-pentane	0	0.0000			RD	0.6238
	i-pentane	0.041064	0.0411			Z	0.8543907
	n-pentane	0.039193	0.0392				
	n-hexane	0.028232	0.0282				
	total	100.0002 mol	100.0000 mol%				
Pipeline	Upst	tream	Downstream <i>T</i>			Flow	399079.32 " kg/h
conditions	Temperature T	8 C	7.55 C	T units	C –		110.85537 kg/s
	Pressure P	56.1 bar		P units	bar 💌	dP	617.40002 mbar
Meter Properties	Calib	ration	Pipeline T			Reynolds Number	26901412
pipe diameter D	calibration D	433.451 mm	433.418 mm	Orifice type	Flange taps 💌	Discharge Coefficient	0.6027513
	T coefficient	0.000011			T4074004	Expansibility	0.996079
	calibration T	15 °C		Flow method	5167:1991	Velocity of Approach	1.1182343
						P loss	0.3312454 bar
orifice diameter d	calibration d	289.970 mm	289.948 mm	Q units	Kg 🔽	CV	51.715519 MJ/Kg
		0.000011		dD unita	mbar -	Energy	20038594 MJ/N
	calibration	15 C		aP units			5732.9428 MJ/S
Beta		0.669	0.669	Length units	mm 👻		
Figure 3 orifice	nlate mass floy	w calculations	for case 1.	Longin units			
		Arifice Dist	e Nesian Calcul	atione			
© Advantica Limited 200	13 ntities are shown	n in blue	Corrected inputs	Calcul	GasVLe Add-in versio	n 3.6 : GasVLe v6.1 : 1/-May Calculation	-2017 User: PJEL LOU
Gas Composition	nitrogen	0.925699	0.9257	Equation of		Calculation	results
eas composition	carbon dioxide	1 807321	1 8073	State	AGAO	Т	6 9000001 C
	methane	90.06426	90.0641			P	49.630001 bar
	ethane	5 271119	5 2711	Viscosity	NBS -	Mass density	44 235821 kg/m ³
	propane	1 426467	1 4265	Viscosity	. –	Isentropic index	1 3337818
	i-butane	0 162113	0 1621			Viscosity	0.0118314 mPa s
	n-butane	0.234711	0.2347	CV	15°C / 15°C -	CV	30 531801 M I/m ³
	neo-pentane	0.234711	0.0000	01			0.6238
	i-pentane	0.041064	0.0411			7	0.8687524
	n-pentane	0.039193	0.0392			2	0.0001021
	n-hexane	0.028232	0.0282				
	total	100.0002 mol	100.0000 mol%				
Pipeline	Upst	tream	Downstream T			Flow	366545.1 [°] kg/h
conditions	Temperature T	6.9 C	6.42 C	T units	C T		101.81808 kg/s
	Pressure P	49.63 bar		P units	bar 💌	dP	596.79999 mbar
Meter Properties	Calib	ration	Pipeline T			Reynolds Number	25281300
pipe diameter D	calibration D	433.451 mm	433.412 mm	Orifice type	Flange taps -	Discharge Coefficient	0.6027556
	T coefficient	0.000011			5167:1001	Expansibility	0.9956716
	calibration T	15 °C		Flow method	5107.1991	Velocity of Approach	1.1182343
orifico disestas d	o olibertine - (000.070	000.044	O unit-	ka	Ploss	0.3201917 bar
offlice diameter d	Calibration d	289.970 mm	289.944 mm	Q units	Kg 💌	CV	19056070 MU/kg
	/ coefficient	0.000011		dD unite	mbar -	Energy	18930070 MJ/h
	calibration7	15 0		ur units	Thous I		J20J.J7J 10J/S
Beta		0.669	0.669	Length units	mm 👻		

Figure 4 orifice plate mass flow calculations for case 2.