

Measurement Error Investigation

Cadent Gas Limited

Null Report Dunstall Green

Document Reference: NK3217-009-001 Client Reference: MER/CAD/205/21

Document Author: Ian Reid

Contact: ian.reid@kelton.co.uk

Kelton Engineering Ltd

The Mackenzie Building, 168 Skene Street Aberdeen, AB10 1PE, Scotland, UK t: +44 (0) 1224 630000 f: +44 (0) 1224 630004 e: info@kelton.co.uk w: www.kelton.co.uk

Contents

1	Revision Control	. 2
2	Executive Summary	. 3
3	Error Description	. 3
4	Methodology	. 5
5	Error Quantification	. 5
6	Learning	. 5
7	References	. 5
8	Appendix A – Turbine Meter Calibration Certificate	.6

1 Revision Control

Rev	Issue date	Description	Prep.	App.
1	22/03/2021	Issued for comment	IR	ВК
2	05/05/2021	Final	IR	BK
2.1	10/06/2021	Revised Final	IR	ВК
2.2	13/07/2021	Revised Final	IR	BK

2 Executive Summary

Site Name	Dunstall Green		
DNO	Cadent Gas Limited		
LDZ	North London		
Error Start Date	Installation C.2004		
(Or) Last Good Date			
Error Corrected Date	8 th February 2021		
Size of Error (over or under read)	<0.005% over-registration		
Error Description	Incorrect meter linearisation curve		
Methodology	Comparison of correct and incorrect meter		
	linearisation curve errors and review of		
	2018 to 2020 data to find maximum gross		
	volume for each year		
Meter Type	Turbine meter		
MER Unique Reference Number	N/A		
Cadent Internal Reference	MER/CAD/205/21		

3 Error Description

Dunstall Green is an HP to LP site in the south east of the North London LDZ, fed by a 750mm pipeline from Winkfield (South) Offtake. The current site capacity is 30,000 Sm3/h. Dunstall Green Inter-LDZ Offtake has a single 12" turbine metering stream for measurement of gas.

A review of the turbine meter linearisation table held within the Omni flow computer took place in November 2020 and discrepancies were noted between the Omni linearisation table and the values in the calibration certificate. This incorrect data is likely to have been resident in the flow computer since meter installation in approximately 2004.

The incorrect linearization data held in the Omni is shown in Table 1, with the correct values shown in Table 2. The corresponding errors for each frequency in the linearisation table are shown in Table 3.

The reason for the error is that there are two repeat flow points performed for each point on the calibration curve and only the first point was entered instead of the average % error for both points.

Frequency (Hz)	K-Factors	
59	645.5819	
234	646.4224	
349	646.2284	
466	646.0345	
586	645.7759	
0	645.9698	

Table 1 – Incorrect Linearisation Table held in Omni flow computer.

Frequency (Hz)	K-Factors	
59	645.6149	
234	646.4223	
349	646.2610	
466	646.0343	
586	645.8090	
699	645.9694	

 Table 2 – Correct Linearisation Table using both flow

 points from meter calibration certificate.

Frequency (Hz)	Error (%)	
59	0.0051	
234	0.0000	
349	0.0050	
466	0.0000	
586	0.0051	
699	100.0000	

Table 3 – % Errors in linearisation curve.

The meter calibration certificate is shown in Appendix A.

4 Methodology

The correct meter calibration flow points were entered into a spreadsheet with the errors averaged over both flow points, this showed that the error due to use of the incorrect linearisation curve was a <+0.005% error on K-Factor.

MARQUIS data files for years 2018, 2019 and 2020 were compiled into yearly spreadsheets (4-minute data). The maximum LGT Standard volume flowrate was established. A line density and standard density was calculated for each 4-minute period using an AGA 8 calculation. The gross volume flow was calculated by using the standard density to convert the maximum LGT flowrate to mass and then dividing by the line density to get the gross volume flowrate.

Error Period	Maximum LGT flowrate (Sm ³ /h)	Maximum Calculated Gross Volume (m ³ /h)		Maximum Frequency (Hz)
2018	14905	2106	366	
2019	15924	2236	389	
2020	23174	3240	561	

Table 1 – Review of 6th Point on Linearisation Curve

5 Error Quantification

As the metering error of <0.005% is less than the measurement error reconciliation threshold of $\pm 0.1\%$ there is no requirement for reconciliation in this instance.

The potential error of using the 6th flow point frequency of 0 Hz instead of 699 Hz was reviewed and it was found that the turbine frequency never exceeded 561 Hz during the 3-year review period, so there was no measurement impact.

6 Learning

It is recommended that any new meter calibration certificates contain the relevant data in the format required by the flow computer so it can be entered directly without having to perform intermediate calculations.

7 References

Dunstall Green Site Data Files (.V03 and .Z03) Omni Flow computer configuration (DUNQ0607.OMI)

8 Appendix A – Turbine Meter Calibration Certificate

