NULL METER ERROR REPORT

FINAL

1. EXECUTIVE SUMMARY

SITE NAME	Whitwell
LDZ	EA
START DATE (actual)	8 th July 2014
LAST GOOD DATE	8 th July 2014
END DATE	25 th June 2015
SIZE OF ERROR (No reconciliar required if under 0.1%)	tion 148628 scm (over read) (0.015%)
ESTIMATE – Y/N?	Ν
ROOT CAUSE	Unknown.
ANALYSIS	HPMIS RBD data
METER TYPE	Orifice plate
AUTHOR	Piers Eldridge
CHECKED BY	Sarah Kimpton
ACCEPTED BY NGGD NETWORK	Andrew Finch

2. BACKGROUND

Gas is supplied to part of the East Anglia Network at Whitwell FWACV offtake. Whitwell is a dual stream orifice plate meter site using a gas chromatograph for RD and CV determination and PTZ correction.

During a routine meter validation MTB low differential pressure transmitter s/n 94104115440200230 failed its calibration check during procedure CP11. Figure 1 shows a screen shot of the test results in HPMIS. The transmitter's zero and span was adjusted with the communicator and the transmitter subsequently passed the CP11 test.

DP Transn	nitter Ch	eck						Status AF
Equipment under test			Tolerance ±	.2 % CALIBR	ATED SPAN		Test Equipment	
Stream	WHITWELL OFON MTB 7401580							Signatures
Equipment	uipment DIFFERENTIAL PRESSURE TRANSMITTER DPLR - 2 94104115440200230							Calculate
Innuts								Retest
Local Grav	ity Correcti	on Factor	0005527 Am	bient Temperatu	ire DWT	20.1 90		Comment
Temperature Coefficient MMT 0000187 %C Lower Pance Value 0 mBar Calibration				Calibration	23 °C			
Ctatia Dessaura Zara			2 0000 Vision Range Value Contraction Temperatu		Temperature I	JWT V		
Static FICS	Sule 2610							
Results	% span	Applied DP (mBar)	Corrected DP (mBar)	Expected Current (mA)	Measured Current (mA) Error % span		
	0		0	4.000	3.997	0188		
	24	12	12.007	7.842	7.876	.2106		
	50	25	25.015	12.005	12.037	.2012		
	74	37	37.022	15.847	15.887	.2493		
	100	50	50.03	20.010	20.048	.2399		
	125	62.5	62.538	24.012	20.795	.0000		
	100	50	50.03	20.010	20.048	.2399		
	74	37	37.022	15.847	<mark>15.878</mark>	.1930		
	50	25	25.015	12.005	12.020	.0949		
	24	12	12.007	7.842	7.858	.0981		
	0	0	0	4.000	3.998	0125		

Figure 1 A screen shot and the failed test from HPMIS.

3. ERROR QUANTIFICATION AND IMPACT

RBD data and audit data from Whitwell from the 16th June 2013 to 16th June 2015 has been analysed. The difference between the low-range differential pressure measurement (LRDP) and the high-range differential pressure measurement (HRDP) has been plotted in figure 2. The high-range differential pressure has been plotted on the secondary axis to show when gas has flowed through the meter. The difference between the LRDP and HRDP has been averaged for each gas day and plotted in figure 3.

It can be seen from the graphs that a shift occurred when the previous meter validation took place and no significant shift occurred between validations.

Figure 4 shows a screenshot of the previous CP11 validation for the low pressure differential pressure transmitter. Figure 5 shows a screenshot of the validation summary for MTB at Whitwell. The validation results for CP11a, CP11b, CP4a and CP4b tests were AF/AL. Therefore no shift in the difference between LRDP and HRDP would be expected.

The standby differential-pressure measurement was not available in the data file.

There is no evidence to explain the shift in the difference between LRDP and HRDP but 9th July 2014 has been used as the start of the reconciliation period.

Figure 2 Plot to show the difference between LRDP and HRDP.

CONFIDENTIAL

Figure 3 Plot to show the difference between LRDP and HRDP average for each gas day.

For each Danalyzer cycle where gas has flowed through the meter the flow rate has been re-calculated using a linear correction for the low-range differential pressure. The difference in the corrected and uncorrected flowrates for MO2 added to the station flowrate and a correction factor for each Danalyzer cycle has been calculated and applied to the difference between subsequent volumetric integrator readings. The daily correction factors are shown in table 1.

4. CAUSES

The cause of the meter error is unknown.

5. RECOMMENDATIONS AND LEARNING

HPMIS (RBD data and validation test results) should continue to be monitored to identify any such future errors.

Investigate the reason for the omission of the standby differential pressure measurement data.

REFERENCES

ISO 5167 HPMIS database MER.xlsm

VERSION HISTORY

Version	Changes	Author	Date
Rev 1	Final	Piers Eldridge	24/08/2015
Rev 2	The flowrate error for MO2 has been applied to the station flowrate.	Piers Eldridge	26/01/2016
Rev 3	Some text was removed	Piers Eldridge	
Rev 4	The working was corrected to calculate the error when the LRDP was in use only.	Piers Eldridge	15/12/2016

DISTRIBUTION

Asset Owner Energy Performance Network Lead Group Asset Strategy

APPENDIX

		Gemini		
	Error	Volume	Correction	
Date	(scm)	(MSCM)	factor	
09/07/2014	361.0758	2.930	0.999877	
29/12/2014	3914.953	7.341	0.999467	
30/12/2014	2958.584	7.057	0.999581	
31/12/2014	4000.33	6.752	0.999408	
01/01/2015	4590.617	5.650	0.999188	
02/01/2015	3092.679	4.971	0.999378	
16/01/2015	1487.058	6.590	0.999774	
17/01/2015	2339.477	7.698	0.999696	
18/01/2015	4421.48	6.811	0.999351	
19/01/2015	3767.73	7.880	0.999522	
20/01/2015	5174.263	6.914	0.999252	
21/01/2015	4451.335	7.917	0.999438	
22/01/2015	3054.322	8.161	0.999626	
23/01/2015	4050.764	8.074	0.999498	
24/01/2015	4285.825	7.326	0.999415	
25/01/2015	4919.938	6.412	0.999233	
26/01/2015	4680.416	6.282	0.999255	
27/01/2015	5232.539	7.174	0.999271	
28/01/2015	5058.047	6.836	0.99926	
29/01/2015	2480.114	7.873	0.999685	
30/01/2015	3244.327	7.853	0.999587	
31/01/2015	906.6658	9.034	0.9999	
01/02/2015	2261.643	7.925	0.999715	
02/02/2015	3486.38	8.168	0.999573	
03/02/2015	3190.361	7.587	0.999579	
04/02/2015	4045.482	7.495	0.99946	
05/02/2015	4909.666	7.733	0.999365	
06/02/2015	2046.858	8.187	0.99975	
07/02/2015	3338.795	7.290	0.999542	
08/02/2015	4969.597	6.418	0.999226	
09/02/2015	4357.038	6.774	0.999357	
10/02/2015	4953.787	6.982	0.99929	
11/02/2015	144.4803	6.644	0.999978	
17/02/2015	1505.395	6.147	0.999755	
18/02/2015	3232.706	6.428	0.999497	
19/02/2015	1181.293	6.254	0.999811	
20/02/2015	3154.312	6.039	0.999478	
21/02/2015	3811.338	6.832	0.999442	
22/02/2015	1215.883	7.171	0.99983	
23/02/2015	1414.922	6.664	0.999788	

		Gemini	
	Error	Volume	Correction
Date	(scm)	(MSCM)	factor
24/02/2015	3247.947	6.669	0.999513
25/02/2015	124.2929	4.914	0.999975
01/03/2015	2745.784	4.802	0.999428
02/03/2015	182.1664	6.560	0.999972
03/03/2015	3305.951	6.476	0.99949
04/03/2015	3771.535	6.551	0.999424
26/03/2015	3011.217	5.529	0.999455
27/03/2015	472.6765	4.136	0.999886
19/04/2015	52.35305	0.114	0.999541
20/04/2015	21.75305	2.173	0.99999

Table 1. Summary of the measurement error and the daily correction factors

Figure 4 A screenshot of CP11a completed in 8th July 2014

Site validation						
Site	Site WHITWELL OFON					
Stream	7401580 MTB					
_						
CP1A	DENSITY COMPUTATION CHECK (AGA8) (DETAILED METHOD)	AF/AL	15-JUN-2015		AF/AL	07-JUL-2014
CP2A	FLOW RATE CHECK (ORIFICE METER)	AF/AL	15-JUN-2015	B	AF/AL	07-JUL-2014
CP4A	ADC CHECK (4-20MA) INPUT) PRESSURE	AF/AL	15-JUN-2015		AF/AL	08-JUL-2014
CP4B	ADC CHECK (4-20MA) INPUT) LOW DIFFERENTIAL PRESSURE	AF/AL	15-JUN-2015	2	AF/AL	08-JUL-2014
CP4C	ADC CHECK (4-20MA) INPUT) HIGH DIFFERENTIAL PRESSURE	AF/AL	15-JUN-2015		AF/AL	08-JUL-2014
CP4D	ADC CHECK (4-20MA) INPUT) STANDBY DIFFERENTIAL PRESSURE	AF/AL	15-JUN-2015		AF/AL	08-JUL-2014
CP4E	ADC CHECK (4-20MA) (INPUT) TEMPERATURE	AF/AL	15-JUN-2015		AF/AL	08-JUL-2014
CP7	DIFFERENTIAL PRESSURE CELL SWITCH POINT CHECK (ORIFICE)	AF/AL	15-JUN-2015		AF/AL	07-JUL-2014
CP10	GAUGE FLOW PRESSURE TRANSMITTER CHECK	AF/AL	15-JUN-2015		AF/AL	08-JUL-2014
CP11A	DIFFERENTIAL PRESSURE TRANSMITTER CHECK (LOW) (ORIFICE)	AF	15-JUN-2015		AF/AL	15-JUN-2015
CP11B	DIFFERENTIAL PRESSURE TRANSMITTER CHECK (HIGH) (ORIFICE)	AF/AL	15-JUN-2015		AF/AL	08-JUL-2014
CP11C	DIFFERENTIAL PRESSURE TRANSMITTER CHECK (STANDBY) (ORIFICE)	AF/AL	15-JUN-2015		AF/AL	08-JUL-2014
CP12	TEMPERATURE TRANSMITTER CHECK	AF/AL	16-JUN-2015	B	AF/AL	09-JUL-2014
CP13	TEMPERATURE ELEMENT SPOT CHECK	AF/AL	16-JUN-2015	6	AF/AL	09-JUL-2014

Figure 5 A screenshot of the validation test summary